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Abstract

The northern hemisphere temperate and boreal forests currently provide an important

carbon sink; however, current tropospheric ozone concentrations ([O3]) and [O3] pro-

jected for later this century are damaging to trees and have the potential to reduce the

carbon sink strength of these forests. This meta-analysis estimated the magnitude of the

impacts of current [O3] and future [O3] on the biomass, growth, physiology and

biochemistry of trees representative of northern hemisphere forests. Current ambient

[O3] (40 ppb on average) significantly reduced the total biomass of trees by 7% compared

with trees grown in charcoal-filtered (CF) controls, which approximate preindustrial [O3].

Above- and belowground productivity were equally affected by ambient [O3] in these

studies. Elevated [O3] of 64 ppb reduced total biomass by 11% compared with trees grown

at ambient [O3] while elevated [O3] of 97 ppb reduced total biomass of trees by 17%

compared with CF controls. The root-to-shoot ratio was significantly reduced by elevated

[O3] indicating greater sensitivity of root biomass to [O3]. At elevated [O3], trees had

significant reductions in leaf area, Rubisco content and chlorophyll content which may

underlie significant reductions in photosynthetic capacity. Trees also had lower tran-

spiration rates, and were shorter in height and had reduced diameter when grown at

elevated [O3]. Further, at elevated [O3], gymnosperms were significantly less sensitive

than angiosperms. There were too few observations of the interaction of [O3] with

elevated [CO2] and drought to conclusively project how these climate change factors will

alter tree responses to [O3]. Taken together, these results demonstrate that the carbon-

sink strength of northern hemisphere forests is likely reduced by current [O3] and will be

further reduced in future if [O3] rises. This implies that a key carbon sink currently

offsetting a significant portion of global fossil fuel CO2 emissions could be diminished

or lost in the future.
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Introduction

Tropospheric ozone (O3) is not only a greenhouse gas

with the third strongest radiative forcing on climate

(Ehhalt et al., 2001; Forster et al., 2007), it is also the air

pollutant considered to be causing the most damage to

plants (Ashmore, 2005; EPA, 2006; Karnosky et al., 2007;

Matyssek et al., 2007; Paoletti et al., 2007). Photochemical

reactions involving nitrogen oxides (NOx), largely of

industrial origin, in the presence of volatile organic

compounds (VOCs) of both natural and industrial

origin, produce O3 pollution (Fowler et al., 1999b;

Denman et al., 2007; Forster et al., 2007). Based on a
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continuous 34-year record of low altitude O3 measure-

ments from the late 19th century, ambient background

tropospheric ozone concentrations ([O3]) in central Eur-

ope averaged 10 ppb (Volz & Kley, 1988). Model projec-

tions over large land areas for the late 19th century

estimate slightly higher [O3] ranging between 15 and

25 ppb in North America and Europe (Akimoto, 2003).

As NOx and VOCs have risen over the past century,

surface ambient background [O3] over land in the

northern hemisphere has increased to levels that are

damaging to vegetation (Chappelka & Samuelson, 1998;

Skarby et al., 1998; Fowler et al., 1999a; Akimoto, 2003;

EPA, 2006; Karnosky et al., 2007; Matyssek et al., 2007).

Tropospheric [O3] is both temporally and spatially

heterogeneous, depending on the distance from source

pollutants, time of day and time of year, which compli-

cates accurate projections of current regional trends or

future concentrations. Contemporary daytime [O3] in

the temperate latitudes of the northern hemisphere

range between 20 and 65 ppb (Akimoto, 2003; Vingar-

zan, 2004; Oltmans et al., 2006), with an average of about

40 ppb (Ehhalt et al., 2001). Concentrations are often

higher in rural areas downwind of urban-source pollu-

tants (Gregg et al., 2003; Oltmans et al., 2006). The largest

projected increases this century are projected for the

northern hemisphere (Karnosky et al., 2005) due to

increasing precursor concentrations in regions with

high industrial development, transcontinental transport

of O3 pollution and changes in climate that increasingly

favor O3 formation (Meehl et al., 2007). In the Third

Assessment Report (TAR), the IPCC projected an aver-

age global increase in background [O3] to approxi-

mately 68 ppb by 2050 and a further increase to 85 ppb

by 2100 in the northern midlatitudes based on the A2

storyline from the Special Report on Emission Scenarios

(SRES) (Ehhalt et al., 2001). These are, however, averages

and considerably higher levels are forecast for specific

areas in the northern midlatitudes (Karnosky et al., 2005;

Sitch et al., 2007).

Current and projected [O3] are sufficient to cause

chronic changes in trees [for reviews see Chappelka &

Samuelson (1998); Skarby et al. (1998); Karnosky et al.

(2007); Matyssek et al. (2007)], most notably reductions

in photosynthesis (Long & Naidu, 2002; Wittig et al.,

2007), accelerated leaf senescence (Pell et al., 1999;

Karnosky et al., 2005; Nunn et al., 2005) and decreased

productivity (Percy et al., 2007). Forests are one of the

most important global sinks for carbon (Geider et al.,

2001; Houghton, 2003; Sitch et al., 2007). Without this

sink, which offsets a significant proportion of current

global CO2 emissions, the rate of increase in atmo-

spheric [CO2] would be greater (Canadell et al., 2007).

Canadell et al. (2007) suggested that the observed

strength of this sink might be declining. We have shown

previously that the rise in [O3] since the Industrial

Revolution has already resulted in a significant decrease

in tree leaf photosynthesis (Wittig et al., 2007), but does

this translate into a loss in biomass and production?

Percy et al. (2007) estimated a maximum 31% loss in

productivity of Populus tremuloides in parts of its North

American range between 2001 and 2003 due to O3. How

widespread are such decreases and can we assess

whether there has been an overall loss and by what

amount? Furthermore, what losses are possible if [O3]

continue to rise?

Most observations of O3 effects on trees have been

made on northern temperate species. Hundreds of peer-

reviewed studies are available in literature reporting

effects of [O3] on tree biomass, along with components

of that biomass and related physiological measures [for

reviews see Chappelka & Samuelson (1998); Skarby

et al. (1998); Karnosky et al. (2007); Matyssek et al.

(2007)]. But, estimating the magnitude of the response

of trees to O3 is yet to be untangled from the many

disparate experimental designs that limit a quantitative

summary of the peer-reviewed literature. Meta-analytic

techniques now provide an established means to sum-

marize such disparate datasets and draw global con-

clusions (Curtis & Wang, 1998; Gurevitch & Hedges,

1999; Hedges et al., 1999; Rosenberg et al., 2000; Ains-

worth et al., 2007). This approach to analyzing prior

studies has proved insightful in examining the effects of

the global rise in [CO2] (Curtis & Wang, 1998; Ains-

worth & Long, 2005) and is now providing new insights

into the effects of rising [O3] (Morgan et al., 2003; Grantz

et al., 2006; Valkama et al., 2007; Wittig et al., 2007;

Ainsworth, 2008).

Meta-analytic techniques are used here to address the

following questions. (1) By how much is current ambi-

ent [O3] decreasing productivity relative to preindus-

trial [O3]? (2) What further reductions in productivity

may result from the expected increases in [O3] within

this century? (3) What is the underlying physiological

basis for any decreases in productivity? (4) How might

these reductions be affected by other atmospheric and

climatic variables?

Materials and methods

Database

A database of the effects of O3 on tree biomass, growth,

physiology and biochemistry was compiled by survey-

ing the peer-reviewed literature with the Web of Science

(Thompson-ISI, Philadelphia, PA, USA) and SilverPlat-

ter (Ovid Technologies, New York, NY, USA) citation

indices following methodology previously described

(Wittig et al., 2007). Briefly, keyword searches covering
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the period 1970 through October 2006 identified 313

articles that reported O3 effects on tree biomass, growth,

physiology and biochemistry, and each article identified

was scanned for data. Articles and their observations

were excluded if (1) the description of experimental

design was insufficient to allow objective assignment to

the categories of Table 1, (2) the data was previously or

more completely reported in another article, (3) the leaf

exposure period was less than 7 days. In total, 263

articles were included in the analysis of O3 impacts on

tree biomass, growth, physiology and biochemistry

(Appendix A).

For each observation included for analysis, the value

in the control and elevated [O3] treatment (XC and XT),

the standard deviations (SDC and SDT) and replication

(NC and NT) were extracted from tables, text and/or

figures of each primary article and then entered into a

database together with the categorical information de-

scribed in Table 1. Values given only in the figures of

publications were digitized using data-extraction soft-

ware (GRAFULA 3 v.2.10; Wesik SoftHaus, St. Petersburg,

Russia). Three databases were compiled: (1) trees grown

in charcoal-filtered (CF) control were compared with

trees grown in ambient background [O3], (2) trees

grown in CF control were compared with trees grown

in elevated [O3] treatments and (3) trees grown in

ambient background [O3] were compared with trees

grown in elevated [O3] treatments.

Within each article, measures of final biomass (total

dry weight, leaf dry weight, shoot dry weight, above-

ground-woody dry weight, root dry weight), root-to-

shoot ratio, height, diameter, leaf area and leaf nitrogen

content on a mass basis recorded at the end of the

experiment were considered independent if they were

made on different species or distinct genotypes within a

species, or if the measurements were made in different

years. Seasonal measures of total chlorophyll content,

chlorophyll a content, chlorophyll b content, chlorophyll

a/b, Rubisco activity, Rubisco content, transpiration,

leaf respiration, starch content and sugar content were

considered independent if they were made on different

species or distinct genotypes within a species, or if the

measurements were made on different dates.

Sources of variation

Eight categories were identified as important potential

sources of variation that could alter the response of trees

to [O3] (Table 1). Each observation was coded into the

levels of each category as follows: (1) angiosperm vs.

gymnosperm, (2) rooting volume, (3) fumigation meth-

od [e.g. FACE (free-air CO2 enrichment) vs. open-top

chamber], (4) duration of the entire experiment (total

duration), (5) duration of the experiment in the current T
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year (current year duration), (6) mean [O3] over the

entire experiment (experiment [O3]), (7) mean [O3]

calculated over the current year of the experiment

(current year [O3]), (8) additional treatments (e.g. ele-

vated [CO2] or drought) (Table 1). In addition to these

categories, the different tree genera were examined.

Because of limited observations of individual species,

it was not possible to assess the impact of [O3] at the

species level. Species within a genera were therefore

combined although it is recognized that contrasting life-

forms within a genus may obscure some differences.

The mean [O3] in the control and treatment is defined as

the hourly average concentration for the exposure per-

iod which varied from 4 to 24 h per day over a mini-

mum duration of 7 days to durations greater than a

year.

Meta-analyses

To calculate the effect of an [O3] treatment on trees as a

proportionate change relative to a control, the natural

log of the response ratio (r) was used, where r is the

ratio of the mean in the experimental treatment (XT)

divided by the mean in the control (XC). Effect sizes are

reported as the antilog r converted to the mean percen-

tage change from the control ([(r�1)� 100]) as in pre-

vious analyses (Curtis & Wang, 1998; Ainsworth et al.,

2002; Morgan et al., 2003; Ainsworth & Long, 2005;

Wittig et al., 2007). Trees unaffected by [O3] have an

r 5 1, and therefore, a 0% change from control. A

negative percentage change indicates a decrease in

response to [O3], while positive values indicate an

increase. A meta-analytic software package was used

to calculate all effect sizes, 95% confidence intervals (CI)

and heterogeneity statistics (METAWIN 2.1.3.4; Sinauer

Associates Inc., Sunderland, MA, USA; Rosenberg

et al., 2000). Three sets of analyses were conducted on

each of the three databases described above: (1) XC was

the measure in CF air, and XT in ambient [O3], (2) XC

was the measure in CF air and XT was the measure in

elevated [O3] treatments and (3) XC was the measure in

ambient [O3] and XT in elevated [O3] treatments.

Approximately two-thirds of the studies did not

report variance along with the mean effect and replica-

tion size, therefore an unweighted fixed-effects model

was used to estimate the mean effect of [O3] relative to a

control for all biomass, growth, physiological and bio-

chemical parameters. Unweighted meta-analyses are

advantageous because they are not restricted by the

assumptions of normality in parametric tests nor by

the need for an observed study variance (Hedges et al.,

1999) and have previously been used to study the

effects of elevated [CO2] and [O3] on soybeans (Ains-

worth et al., 2002; Morgan et al., 2003). An assumption of

the unweighted meta-analytic technique is that the

variance in the treatment and control is equal to one

(Rosenberg et al., 2000). Under this assumption, it is not

statistically possible to test for between-group hetero-

geneity (QB) and for this reason, the unweighted tech-

nique was not used to estimate differences between the

categorical groups defined in Table 1. It was however

possible to use bootstrapping techniques to generate

95% CI around the mean effect and determine the

direction, magnitude and significance of the mean effect

relative to control. To generate the bootstrapped CI, we

used 64 999 iterations, the maximum allowed by the

meta-analysis software, in order to minimize variation.

If the 95% bootstrapped CI did not overlap zero, re-

sponse to O3 is considered significant (Ainsworth et al.,

2002; Morgan et al., 2003).

A weighted random-effects model was used, where

each individual response was weighted by the recipro-

cal of the observed pooled variance (Gurevitch &

Hedges, 1999; Hedges et al., 1999), to examine the effects

of the categorical levels described in Table 1 on total

biomass, leaf biomass, leaf area, aboveground-woody

biomass, shoot biomass, root biomass, root-to-shoot

ratio, height and diameter. Each of these variables had

high degrees of freedom (df) even when observations

without variance were excluded. Total heterogeneity

(QT) was tested against a w2 distribution and CIs were

generated using bootstrapping techniques, again with

64 999 iterations. The categorical analysis proceeded by

partitioning the QT into the between-group heterogene-

ity (QB) and within-group heterogeneity (QW). Cate-

gories were determined to have at least one level

significantly different from the others if the randomized

P-value waso0.05, indicating that group membership

was not random. Resampling techniques were used to

generate randomized P-values because the data did not

conform to the assumptions of parametric tests, (i.e. the

data were not normally distributed). If the 95% boot-

strapped CIs constructed around the mean effect size

for each categorical level did not overlap, means were

considered to be significantly different from one an-

other (Curtis & Wang, 1998; Gurevitch & Hedges, 1999).

Levels of each category were included in the analysis if

there were at least 10 observations; however, if less than

10 observations were available, results were only dis-

cussed if they originated from at least three indepen-

dent articles.

Results

Ambient [O3] relative to CF controls

Comparison of trees grown in current ambient [O3]

with CF air provides a measure of how the elevation
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of [O3] that has occurred since the Industrial Revolution

has reduced tree productivity. Across all studies, the

average [O3] in the ambient air was 40 ppb (Fig. 1).

Relative to CF air, this reduced the total biomass of trees

across all studies (df 5 99) significantly and on average

by 7% (Fig. 1). Aboveground woody biomass, stem

diameter and shoot biomass were similarly reduced

by 6%, 5% and 6%, respectively (Fig. 1). Similar de-

creases were indicated for leaf and root biomass, but

were not significant, whereas leaf area was reduced

significantly by 4% (Fig. 1). Height and root-to-shoot

ratio were not affected significantly (Fig. 1). There were

no differences among the categories described in Table 1

nor for genera for total dry weight, leaf dry weight,

shoot dry weight, aboveground woody dry weight, root

dry weight or root-to-shoot ratio for trees grown in

ambient [O3] relative to CF controls in the weighted

meta-analysis (Appendix B1). In comparing ambient

[O3] with CF, there were too few observations of differ-

ent tree species to analyze variation between genera in

the height and diameter studies (Appendix B2). Ambi-

ent [O3] relative to CF controls had no impact on

transpiration or respiration rates or on chlorophyll,

nitrogen, sugar or starch content (Appendix B3).

Elevated [O3] treatments relative to CF controls

Comparison of trees grown in air with elevated [O3] to

trees grown in CF air provides a relative measure of

how the elevation of [O3] to anticipated 2100 levels

(Ehhalt et al., 2001) will affect measures of productivity

relative to preindustrial [O3]. Elevation of [O3] between

81 and 101 ppb on average amplified all the effects on

productivity reported in ‘Ambient [O3] relative to CF

controls’. Total biomass was decreased by 17% at mean

[O3] of 97 ppb averaged across studies compared with

7% at 40 ppb, and similar reductions were observed in

all other measures of biomass examined (Fig. 2).

In contrast, a significant reduction in root biomass

was observed, which exceeded the decrease in shoot

biomass, resulting in a significant 6% reduction in the

root-to-shoot ratio, indicating decreased partitioning of

carbon to roots. Height, which was not significantly

affected by 40 ppb [O3], was decreased significantly by

elevation of [O3] on average to 95 ppb (Fig. 2). Stem

diameter was decreased by 10% and less than total

biomass, consistent with the fact that biomass will be

proportional to volume, of which diameter only repre-

sents one dimension.

Previous analyses reported the impact of elevated

[O3] on light-saturated photosynthesis and stomatal

conductance of trees (Wittig et al., 2007) and are shown

here for comparison. The reduction in leaf photosynth-

esis, 18% (Fig. 3), is almost identical to the reduction in

biomass (Fig. 2). The impact of a decreased leaf photo-

synthetic rate on productivity would be amplified by

the 20% decrease in leaf area (Fig. 2), but offset by the

similar reduction in respiration (Fig. 3). Decreased

chlorophyll a and b content resulted in decreased total

chlorophyll content, but with no change in chlorophyll

a/b, and very large decreases in Rubisco content (28%)

and activity (21%) (Fig. 3). The significant 15% decrease

in sucrose may indicate that decrease in photosynth-

esis is greater than decreases in utilization or sink

activity, which is consistent with decrease in respiration

(Fig. 3). Interestingly, nitrogen content was increased.

This may result from the decreased size of the plant

relative to the amount of nitrogen available, or to

Fig. 1 Percent change in total biomass, leaf biomass, leaf area, aboveground woody biomass, shoot biomass, root biomass, root-to-shoot

ratio, height and diameter of all trees exposed to ambient ozone concentrations ([O3]) relative to charcoal-filtered controls. Symbols are

bracketed by 95% bootstrapped confidence intervals; degrees of freedom and mean [O3] are given along the y-axis.
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nitrogen retranslocation from prematurely senescing

leaves under O3 exposure.

Gymnosperms were less sensitive to elevated [O3]

than angiosperms (Fig. 4; Table 2). Total biomass of

angiosperms was reduced by 23% at an average ele-

vated [O3] of 74 ppb, while total biomass of gymnos-

perms was reduced by just 7% at a higher mean [O3]

of 92 ppb (Fig. 4). The reduction in gymnosperm total

biomass was largely driven by significant decreases

in root biomass; the reductions in gymnosperm shoot

and leaf biomass were not significant (Fig. 4). Ele-

vated [O3] significantly decreased both above- and

belowground biomass in angiosperms (Fig. 4), and

also caused a 22% decrease in the root-to-shoot ratio

(Fig. 4).

Although four gymnosperm genera, Abies, Picea,

Pinus and Sequoiadendron were included in the meta-

analysis of all trees, only Picea and Pinus had enough

Fig. 2 Percent change in total biomass, leaf biomass, leaf area (per unit area), aboveground woody biomass, shoot biomass, root

biomass, root-to-shoot ratio, height and diameter of all trees exposed to elevated ozone concentrations ([O3]) relative to charcoal-filtered

controls. Symbols are bracketed by 95% bootstrapped confidence intervals; degrees of freedom and mean [O3] are given along the y-axis.

Fig. 3 Percent change in transpiration, respiration, total chlorophyll content, chlorophyll a content, chlorophyll b content, chlorophyll

a/b ratio, Rubisco content, Rubisco activity, leaf nitrogen content, sucrose content and starch content � 95% bootstrapped confidence

intervals for all trees exposed to elevated ozone concentrations ([O3]) relative to charcoal-filtered controls. Degrees of freedom and mean

[O3] are given along the y-axis. *Photosynthesis and stomatal conductance values have been taken from Wittig et al. (2007).
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observations to be included in the categorical analysis.

Both Picea and Pinus, showed very similar responses to

elevated [O3] (Table 3). Eleven angiosperm genera were

included in the meta-analysis of the total biomass of all

trees: Acer, Alnus, Betula, Fagus, Fraxinus, Liquidambar,

Liriodendron, Quercus, Platanus, Populus and Prunus. Of

those, four angiosperm genera were included in the

categorical analysis (Table 3). Liriodendron did not show

any reduction in total biomass at elevated [O3] (83 ppb)

in contrast to Betula, Populus and Prunus, which were all

significantly reduced (Table 3).

As treatment [O3] increased, total angiosperm bio-

mass was progressively reduced (Table 4; Fig. 5). [O3]

less than 40 ppb had no significant effect on total

biomass, while concentrations between 40 and 60 ppb

decreased angiosperm biomass by � 20% and concen-

trations greater than 80 ppb decreased biomass by

� 40% (Fig. 5). Other categories of studies did not

Fig. 4 Percent change in total biomass, leaf biomass, leaf area, shoot biomass, root biomass and root-to-shoot ratio for gymnosperms

and angiosperms exposed to elevated ozone concentrations ([O3]) relative to charcoal-filtered controls. Symbols are bracketed by 95%

bootstrapped confidence intervals; degrees of freedom and mean [O3] are given along the y-axis.

Table 2 The between-group heterogeneity (QB) evaluated using resampling tests with 64 999 iterations to generate a randomized

probability value for the total biomass, leaf biomass, aboveground woody biomass, shoot biomass, root biomass, root-to-shoot ratio,

height and diameter of all trees exposed to elevated ozone concentrations ([O3]) relative to charcoal-filtered controls in a weighted

random-effects meta-analysis with categorical structure

Variable Genera

Tree

classification

Rooting

volume

Fumigation

method

Total

experiment

duration

Current

year

duration

Experiment

mean [O3]

Current

year

mean [O3]

Additional

treatment

Total biomass 70.356* 33.190*** 5.367 5.599 27.933 4.930 15.371 15.613 7.087

Leaf biomass 24.825 10.322*** 7.520* 0.392 23.025* 4.266 3.268 3.325 0.793

Leaf area 17.921 5.6787* 23.132 6.671 16.574 7.919 0.105 0.105 0.993

Aboveground

woody biomass

41.028* 0.272 7.528 0.088 0.657 0.646 17.422* 17.333* 0.401

Shoot biomass 44.417** 8.514* 6.710 5.967 1.958 3.325 9.277 9.057 1.542

Root biomass 49.407** 12.270** 4.642 3.874 6.638 2.074 9.381 9.748 6.618

Root-to-shoot ratio 37.533 15.394* 21.749* 6.314 5.481 6.060 13.042 12.716 16.640

Height 37.067*** 0.890 1.067 14.415* 4.715 1.432 2.668 1.365 5.951

Diameter 17.7139* 0.027 1.248 7.048* 15.588* 4.534 2.067 2.201 2.474

P-values o0.05 are considered significant.

*Po0.05 **Po0.01 ***Po0.001.
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consistently affect the biomass response of trees to

elevated [O3] (Table 2; Appendix C).

Elevated [O3] treatments relative to ambient [O3] controls

Comparison of trees grown in air with elevated [O3]

of an average of 64 ppb to the current ambient [O3]

of an average of 40 ppb, provides a measure of how

the elevation of [O3] to anticipated 2050 levels (Ehhalt

et al., 2001) will affect measures of productivity relative

to today. All measures of biomass, as well as root-to-

shoot ratio, leaf area, height and diameter show sig-

nificant reductions (Fig. 6). These parallel with those

observed when comparing an average elevation of

about 97 ppb with CF, although are smaller in magni-

tude. Importantly, these studies suggest that while

elevation from preindustrial [O3] of o10 to 40 ppb

decreased biomass by 7%, a further increase from 40

to 64 ppb will decrease production by 11%.

Paralleling the findings for the comparison of ele-

vated [O3] vs. CF air, the large decrease in leaf photo-

synthetic rate would be amplified by a large decrease in

leaf area, but possibly partially offset by an indicated,

but not significant, decrease in respiration. Also, in

parallel with elevated [O3] vs. CF there were significant

decreases in chlorophyll and Rubisco content, even

though nitrogen content per unit mass increased (Fig.

7). Transpiration was reduced by 9%; starch and sucrose

were not different from controls (Fig. 7).

Gymnosperms were much less affected by an in-

crease in [O3] from ambient concentrations relative to

angiosperms (Fig. 8). Gymnosperms were largely un-

affected by elevated [O3] (Fig. 8); however, angiosperm

total biomass was reduced by 15% (Fig. 8). Angiosperm

leaf area, leaf biomass and diameter were all signifi-

cantly reduced relative to controls and different from

gymnosperms (Fig. 8). There was no difference between

the two gymnosperm genera examined (Table 6). Eight

angiosperm genera were included in the analysis of

all trees: Acer, Betula, Fagus, Fraxinus, Liriodendron,

Populus, Prunus and Quercus. Of those, five were in-

cluded in the categorical analysis after exclusion cri-

teria were assessed. Although Liriodendron increased

total biomass in elevated [O3] relative to ambient [O3],

interpretation of this finding is limited by large un-

certainty and low df (Table 6). In contrast, Populus,

Prunus and Quercus all showed significant decreases

in total biomass in elevated [O3] while Betula was not

different from ambient [O3] controls (Table 6). Other

differences in leaf biomass, root biomass and dia-

meter reported in Table 5 are presented in full in

Appendix D.

Table 3 Effect sizes, 95% bootstrapped confidence intervals (CIs), degrees of freedom (df) and mean ozone concentrations in the

treatment and control ([O3] XT/XC) for the total biomass of angiosperms, gymnosperms and the different genera exposed to elevated

[O3] relative to charcoal-filtered controls

Genera

Percentage

change 95% CI df [O3] XT/XC QB P-value

Gymnosperms �6 �8 to �3 72 92/12 0.607 0.819

Picea �2 �8 to 4 8 45/12

Pinus �6 �9 to �4 59 96/12

Angiosperms �23 �29 to �16 114 74/10 24.010 0.133

Betula �20 �42 to �1 14 84/2

Liriodendron 1 �15 to 23 8 83/15

Populus �27 �36 to �17 71 74/9

Prunus �27 �44 to �7 6 62/10

The between-group heterogeneity (QB) and associated P-values are presented for gymnosperm and angiosperm genera.

Table 4 The between-group heterogeneity (QB) evaluated

using resampling tests with 64 999 iterations to generate a

randomized probability value for the total biomass of angios-

perms and gymnosperms exposed to elevated ozone concen-

trations ([O3]) relative to charcoal-filtered controls in a

weighted random-effects meta-analysis with categorical struc-

ture

Category

Gymnosperms Angiosperms

QB P-value QB P-value

Genera 0.607 0.819 24.010 0.133

Rooting volume 3.793 0.185 23.959 0.018*

Fumigation method 3.085 0.215 0.926 0.495

Total experiment duration 7.015 0.418 20.530 0.069

Current year duration 5.124 0.306 7.625 0.234

Leaf fumigation duration 5.065 0.307 7.625 0.231

Experiment mean [O3] 5.656 0.208 46.096 0.002**

Current year mean [O3] 3.729 0.622 40.312 0.009**

Additional treatment 6.226 0.284 2.575 0.438

P-value o0.05 is considered significant.

*Po0.05; **Po0.01.
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Discussion

Is current ambient ozone decreasing tree productivity
relative to preindustrial [O3]?

The best available ground level measurements of tropo-

spheric [O3] before the Industrial Revolution in the

northern temperate zone, suggest an average concen-

tration of 10 ppb (Volz & Kley, 1988). Today, summer

daytime surface background concentrations in the

northern temperate zone may average 40 ppb (Fowler

et al., 1999b; Ehhalt et al., 2001). Several modeling

studies, based on limited datasets suggest that this

increase in [O3] is likely to decrease carbon uptake into

forests (Ollinger et al., 1997; Felzer et al., 2004). A meta-

analysis of measured leaf photosynthetic rates showed

an 11% average decrease due to elevation of [O3] to

47 ppb (Wittig et al., 2007). Is this inferred decrease

detectable in the actual measurements of biomass and

productivity? This meta-analytic review of 263 peer-

reviewed articles reporting O3 impacts on tree biomass

shows that ambient [O3] of 40 ppb averaged across all

studies resulted in a statistically significant 7% reduc-

tion (CI 4–10%, df 5 99; Fig. 1). This decrease is relative

to CF controls, which had a mean [O3] of 17 ppb across

all studies, and so was slightly higher than the assumed

preindustrial [O3]. Therefore, even this 7% loss may be a

slight underestimate. The species examined in the meta-

analysis were from 10 genera including Abies, Acer,

Betula, Fagus, Liriodendron, Picea, Pinus, Populus, Prunus

and Quercus and there was no significant difference

detected between them (Appendix B1). The species

represented by these genera include many of the major

or co-dominant species of the forests of the temperate

and boreal regions of the northern midlatitudes. Sitch

et al. (2007) projected from a modeling study that the

northern forest carbon sink is depressed by current

ambient [O3]. Despite being based on measurements

Fig. 5 Percent change in total biomass of angiosperms in elevated ozone concentration ([O3]) categories relative to charcoal-filtered

controls. Symbols are effect sizes bracketed by 95% bootstrapped confidence intervals; degrees of freedom and mean [O3] are given along

the y-axis.

Fig. 6 Percent change in total biomass, leaf biomass, leaf area (per unit area), aboveground woody biomass, shoot biomass, root

biomass, root-to-shoot ratio, height and diameter of all trees exposed to elevated ozone concentrations ([O3]) relative to ambient [O3]

controls. Symbols are bracketed by 95% bootstrapped confidence intervals; degrees of freedom and mean [O3] are given along the y-axis.
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from young trees in controlled environments, the cur-

rent study provides the strongest experimental evi-

dence to date, given both its statistical significance

and the fact that it is based on 100 independent mea-

surements, for the hypothesis of Sitch et al. (2007).

Ollinger et al. (1997) predicted net primary produc-

tivity (NPP) of the northeastern US forest by coupling a

simple model of ambient [O3] effects on leaf photo-

synthesis to a forest ecosystem model (PnET-II). They

projected that ambient [O3] could be reducing NPP by

Fig. 7 Percent change in transpiration, respiration, total chlorophyll content, chlorophyll a content, chlorophyll b content, chlorophyll

a/b ratio, Rubisco content, leaf nitrogen content, sucrose content and starch content � 95% bootstrapped confidence intervals for all

trees exposed to elevated ozone concentrations ([O3]) relative to ambient [O3] controls. Degrees of freedom and mean [O3] are given

along the y-axis. *Photosynthesis and stomatal conductance values have been taken from Wittig et al. (2007).

Fig. 8 Percent change in total biomass, leaf biomass, leaf area, shoot biomass, root biomass, root-to-shoot ratio and diameter for

gymnosperms and angiosperms exposed to elevated ozone concentrations ([O3]) relative to ambient [O3] controls. Symbols are bracketed

by 95% bootstrapped confidence intervals; degrees of freedom and mean [O3] are given along the y-axis.
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3–16% and that the greatest losses were in aboveground

woody biomass in comparison with leaf or root bio-

mass. The present meta-analysis provides experimental

and statistically significant support to both these projec-

tions (Fig. 1). It was not, however, possible to provide

conclusive insight into the interaction of drought and

O3 as was done in the Ollinger et al. (1997) modeling

study. Ollinger et al. (1997) show that periods of high

[O3] are associated with hot, dry weather that reduces

stomatal conductance and offsets [O3] impacts. In the-

ory, any environmental condition that reduces stomatal

conductance will reduce O3 uptake and lessen any

subsequent damage. Because of gaps in observations

of this interaction in literature, it is uncertain from the

meta-analysis what the magnitude or significance of

this interaction is under contemporary [O3].

Modeled estimates of carbon sequestration by forests

of the Great Smoky Mountains National Park attribute a

50% loss (0.9 Tg) to ambient [O3] between 1971 and 2001

(Zhang et al., 2007). This ecosystem process model also

suggested that pine forests were less affected than

angiosperms (Zhang et al., 2007). A meta-analysis of

the impact of current ambient [O3] on the photosynth-

esis and stomatal conductance of trees reported large,

significant reductions in both parameters for angios-

perms, whereas pine and other gymnosperms were

unaffected (Wittig et al., 2007). However, in the present

study, no differences were detected between the bio-

mass of angiosperms and gymnosperms in response to

ambient [O3] relative to CF (Table 2; Fig. 1). This differs

from Wittig et al. (2007) that showed a significant loss of

leaf photosynthesis in angiosperms due to ambient [O3]

Table 5 The between-group heterogeneity (QB) evaluated using resampling tests with 64 999 iterations to generate a randomized

probability value for the total biomass, leaf biomass, aboveground woody biomass, shoot biomass, root biomass, height and

diameter of all trees exposed to elevated ozone concentrations ([O3]) relative to ambient [O3] controls in a weighted random-effects

meta-analysis with categorical structure

Genera

Tree

classification

Rooting

volume

Fumigation

method

Total

experiment

duration

Current year

duration

Experiment

mean [O3]

Current year

mean [O3]

Additional

treatment

Total biomass 20.150** 4.702** 3.033 1.266 3.994 0.441 0.939 1.212 1.502

Leaf biomass 4.303 1.693** 2.730 0.277 8.649 0.699 0.732 0.698 0.711

Leaf area 10.104 2.078 6.834 0.854 3.461 3.088 1.976 0.660 1.904

Aboveground

woody

biomass

5.292 0.012 2.503 0.790 0.171 0.152 2.637 2.826 1.369

Shoot biomass 10.827 1.826 5.720 0.177 4.874 3.957 3.985 2.835 9.408

Root biomass 19.173* 3.449 6.779 3.251 4.640 0.501 0.882 1.080 2.128

Root-to-shoot

ratio

16.114 0.007 3.834 2.682 1.067 0.392 7.648 7.338 1.762

Height 12.657 2.779 4.135 6.646 7.936 2.623 1.890 4.390 0.704

Diameter 21.298**13.662*** 18.624** 9.499* 9.549 2.987 6.064 6.405 0.103

P-values o0.05 are considered significant.

*Po0.05; **Po0.01; ***Po0.001.

Table 6 Effect sizes, 95% bootstrapped confidence intervals (CIs), degrees of freedom (df) and mean ozone concentrations in the

treatment and control ([O3] XT/XC) for the total biomass of all trees, angiosperms, gymnosperms and the different genera exposed to

elevated [O3] relative to ambient air controls

Genera Percentage change 95% CI df [O3] XT/XC QB P-value

Gymnosperms �1 �7 to 4 46 57/31 0.417 0.208

Picea 5 �9 to 20 10 49/27

Pinus �4 �8 to 2 35 59/32

Angiosperms �15 �21 to �10 77 59/36 19.357 0.014*

Betula �7 �17 to 4 13 46/28

Liriodendron 23 14 to 36 7 79/48

Populus �22 �31 to �15 29 60/40

Prunus �24 �37 to �10 8 57/36

Quercus �23 �52 to �1 5 58/27

P-value o0.05 (*) is considered significant.
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but not gymnosperms. However, decreased biomass

does not depend only on decreased leaf photosynthesis,

but could also result from decreased leaf area (Fig. 1)

and/or increased diversion of resources within the leaf

to detoxifying O3 and tissue repair (Wieser & Matyssek,

2007).

It has been suggested that ability to project from [O3]

studies using small trees in chambers to [O3] impacts on

large forest trees is limited (Samuelson & Kelly, 2001;

Karnosky et al., 2005, 2007). This is relevant because

most studies are short-term experiments on long-lived

organisms in varied artificial chamber environments,

which may limit the conclusions from this meta-analy-

sis. However, in the Aspen-FACE experiment, biomass

loss after 6 years of growth and treatment appeared

proportionally similar to the loss at 2 years (King et al.,

2005). Although arguably still young after 6 years of

growth, the continuous open-air fumigation from plant-

ing through canopy closure and beyond at Aspen-FACE

provides unique and critical insight into the potential

response of an intact, mature forest. Furthermore, while

the bias of most experiments to juvenile trees must

remain a concern, the meta-analytic results are in good

agreement with previous model estimates derived from

young tree data (Hogsett et al., 1997; Ollinger et al., 1997).

What further reductions in productivity may result from
the expected increases in ozone within this century?

If [O3] in the northern hemisphere progressively in-

creases over this century, as projected (Ehhalt et al.,

2001), then it may reach 68 ppb by 2050 and 85 ppb by

2100. Elevation from current to an average 64 ppb [O3]

resulted in an average decrease in tree biomass of 11%

(CI 7–14%, df 177; Fig. 7). By the close of this century,

the meta-analysis suggests that biomass losses may

reach 17% (CI 15–20%, df 406; Fig. 2), relative to

preindustrial [O3] and therefore a further 10% reduction

relative to today. Open-air daytime fumigation of trees

with tropospheric [O3] at approximately 50 ppb at the

Aspen-FACE facility in Rhinelander, Wisconsin, caused

21%, 13% and 14% reductions in NPP of aspen, aspen-

birch and aspen-maple communities, respectively, after

7 years of fumigation (King et al., 2005). The value for

aspen (P. tremuloides) is similar to the mean response of

Populus in this meta-analysis (21% cf. 22%, Table 6).

However, the mean treatment level in Aspen-FACE was

50 ppb, while the 22% average decrease observed here

was from an average exposure level of 60 ppb. This

suggests a greater impact of [O3] when applied in an

open-air treatment and is consistent with recent find-

ings that soybean biomass was decreased more under

open-air treatment in FACE than in chamber experi-

ments (Morgan et al., 2003, 2005). While this is limited to

two studies, it should be of concern that the large and

significant losses projected across the chamber studies

may be underestimates of what will occur under open-

air and over longer, more realistic growth periods.

Clearly, more and longer duration open-air studies like

those conducted by King et al. (2005) in different forest

types are critical if we are going to understand future

changes to temperate and boreal forest productivity.

While the impact of current ambient [O3] relative to

CF was not significantly different when comparing

gymnosperms with angiosperms (Appendix B1), eleva-

tion from present ambient to expected levels for 2050

and 2100 affected angiosperms significantly more than

gymnosperms (Figs 4 and 8, Tables 2 and 5). Gymnos-

perm biomass was not significantly reduced by elevated

[O3] to an average 57 ppb relative to ambient [O3] of

31 ppb in contrast to a 15% reduction in angiosperms at

an average [O3] of 58 ppb relative to ambient [O3] of

36 ppb. However, relative to CF air, at an average

elevation of [O3] to 92 ppb, gymnosperm biomass was

significantly decreased, but only by 6% compared with

23% in angiosperms at an average of 74 ppb (Figs 4 and

8). As all the gymnosperms studied were evergreen

while the majority of angiosperms were deciduous, it

was therefore not possible to determine whether this

difference was due to leaf longevity or phylum. Ever-

green leaves as a rule have lower stomatal conductance

than deciduous leaves (Samuelson & Kelly, 2001), which

would decrease O3 uptake and subsequent damage.

Whatever the basis, this finding suggests that rising

[O3] might not only decrease the productivity of forests,

but also give gymnosperms an advantage in mixed

Table 7 The between-group heterogeneity (QB) evaluated

using resampling tests with 64 999 iterations to generate a

randomized probability value for the total biomass of angios-

perms and gymnosperms exposed to elevated ozone concen-

trations ([O3]) relative to ambient [O3] controls in a weighted

random-effects meta-analysis with categorical structure

Category

Gymnosperms Angiosperms

QB P-value QB P-value

Genus 0.417 0.208 19.357 0.014*

Rooting volume 5.452 0.029* 14.806 0.007**

Method 0.114 0.484 3.426 0.174

Total duration 2.487 0.168 12.026 0.103

Current year duration 0.180 0.631 2.947 0.206

Leaf fumigation duration 0.233 0.550 2.947 0.208

Experiment [O3] 4.931 0.037 3.116 0.390

Current year [O3] 0.786 0.501 5.051 0.186

Additional treatment 8.595 0.055 2.377 0.588

P-value o0.05 is considered significant.

*Po0.05; **Po0.01.
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deciduous forest, which would potentially lead to

changes in community composition.

It is also clear from the present study that some

genera are more sensitive than others. For example,

Liriodendron biomass was not different from CF control

when exposed to average elevated [O3] of 83 ppb, while

Populus biomass was reduced by 27% (CI 17–36%)

under elevated [O3] of 74 ppb (Table 3). It may be of

relevance that Liriodendron is a basal angiosperm, and

while deciduous, of the angiosperms examined, is the

closest relative to the gymnosperms. Although the

genus-level analysis provides additional insight into

angiosperm and gymnosperm responses, it is also re-

cognized that within species, there are sensitive and

tolerant genotypes that are not accounted for at the

genus scale (Karnosky et al., 2007).

Some individual studies found that elevated [O3]

reduced root biomass more than aboveground biomass

(Coleman et al., 1996). Grantz et al. (2006) conducted a

meta-analysis of [O3] impacts on the root-to-shoot allo-

cation coefficient (k) and relative growth rate (RGR) of

plants. Although predominantly based on herbaceous

species, it included seedlings of five tree species, from

three studies. Results from their meta-analysis suggest

that k for three of the five tree species, Pinus sylvestris,

Picea abies and Quercus petraea, were reduced by ele-

vated [O3]. Grantz et al. (2006) suggest that leaves lower

in the canopy are the preferential sources of assimilates

for roots while leaves in the upper canopy are prefer-

ential sources of assimilates for shoots. It thus follows

that the older leaves lower in the canopy which are

undergoing accelerated senescence might be the cause

of the lower root-to-shoot ratio (Grantz et al., 2006).

The much larger dataset examined here shows a 15%

reduction (CI 10–21%) in root-to-shoot ratio across 78

independent measures of angiosperm trees in response

to a mean elevation of [O3] to 59 ppb (Fig. 8). Quercus

was among those included in the 78 observations and

although the CI was large (1–52%), a significant reduc-

tion was detected (Table 6). In contrast to Grantz et al.

(2006), the 47 independent measures of gymnosperm

root-to-shoot ratios, representing Picea and Pinus, at

mean elevation of [O3] to 57 ppb did not reveal a

significant effect, relative to an ambient [O3] of 31 ppb

(Fig. 8). The dramatic 15% decrease in allocation to

angiosperm roots found in the current analysis has

broad negative implications both for community per-

sistence and carbon sequestration. A smaller root sys-

tem, relative to shoot size, is likely to increase

vulnerability to drought, storm damage and nutrient

stress. This effect differs between angiosperms and

gymnosperms (Table 2) and so may also cause long-

term changes in community composition by disadvan-

taging angiosperms more than gymnosperms. Overall,

the highly significant decrease in angiosperm root-to-

shoot ratio suggests that the losses of biomass due to

elevated [O3] observed here, may be a minimum of the

actual losses, given that these effects could be amplified

by these secondary effects that may well decrease tree

fitness.

What is the underlying physiological basis for any
decreases in productivity?

A previous meta-analysis, limited to photosynthesis

and stomatal conductance, showed significant reduc-

tions in both parameters by elevated [O3] relative to CF

and air with current ambient [O3] (Wittig et al., 2007).

The present analysis shows parallel large decreases in

leaf area of 18% and 20% at elevated [O3] of 67 and

86 ppb, respectively (Figs 3 and 7) compared with the

18% and 19% reductions in light-saturated photosynth-

esis at 81 and 86 ppb averaged across elevated [O3]

studies, respectively (Wittig et al., 2007). While it has

been shown that threshold O3 metrics such as the

SUM06 and AOT40 as well as cumulative O3 flux are

effective at relating damage and exposure (Martin et al.,

2000; Low et al., 2006; Matyssek et al., 2007), the only

way to place every study in the meta-analysis on a

common framework was to group them by [O3]. The

similarity in the magnitudes of decrease in photosynth-

esis, stomatal conductance, and leaf area across elevated

[O3] studies indicates that the grouping by [O3] in the

meta-analysis was effective. These results have clear

implications for the carbon sink capacity of these trees.

Reductions in stomatal conductance, along with the

significant decreases in transpiration reported in this

analysis (Figs 3 and 7), also imply reduced transfer of

water to the atmosphere, decreasing humidity and

potentially altering regional rainfall patterns in tempe-

rate and boreal forests. Integration of leaf physiological

effects into General Circulation Models has shown that

such decreases in transpiration can significantly in-

crease continental surface temperatures, humidity and

atmospheric circulation (Sellers et al., 1996).

Several individual studies have shown that elevated

[O3] causes accelerated senescence and earlier loss of

Rubisco, which leads to a remobilization of resources to

younger tissue (reviewed: Long & Naidu, 2002). This

quantitative summary of 47 independent observations

show a significant 28% (CI 10–41%) reduction in Rubis-

co content for leaves fumigated with a mean elevated

[O3] of 92 ppb. A decrease in Rubisco content could be

the result of increased protein degradation from oxida-

tive damage or decreased synthesis (Long & Naidu,

2002). Brendley & Pell (1998) showed a premature loss

of Rubisco from older leaves, and corresponding

increases in Rubisco in leaves at the top of hybrid poplar
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canopies. This type of compensatory response might

explain the increase in nitrogen content in leaves, as

shown in the present analysis (Figs 3 and 7). However, it

could also reflect the fact that total biomass per unit

land area is decreased, while the nitrogen nutrient

resource is unchanged.

A recent meta-analysis of studies published between

1990 and 2005 reported [O3] impacts on total leaf

nutrient concentrations, total carbohydrate concentra-

tions and insect herbivore performance alone and in

combination with elevated [CO2] (Valkama et al., 2007).

Valkama et al. (2007) grouped all leaf nutrients, for

example, N, P, K, Ca, etc., together and the results based

on 125 independent measures showed no overall dif-

ference in total nutrients due to elevated [O3] relative to

ambient [O3]. However, this absence of an overall effect

resulted because decreases observed in some species

were offset by increases in others. In our meta-analysis

of 185 independent observations of leaf nitrogen con-

tent alone for trees grown in elevated [O3] of 78 ppb

relative to CF air, nitrogen content was increased sig-

nificantly by 3% (CI 1–6%; Fig. 3). Furthermore, across

143 independent observations of leaves grown in ele-

vated [O3] of 61 ppb relative to ambient [O3] of 34 ppb,

nitrogen content was significantly increased by 5% (CI

1–10%; Fig. 7). The difference in the two studies might

result from the larger sample size used here, and/or

from the fact that nitrogen was separated out in the

present study.

Valkama et al. (2007) also found that total leaf carbo-

hydrate concentrations, including sugars, starch and

total nonstructural carbohydrates, were significantly

reduced for angiosperms but there was a lack of re-

sponse in gymnosperms. The separate meta-analysis of

sucrose and starch concentration in leaves in the current

study suggests that starch content is unchanged while

sucrose content is reduced in elevated [O3] relative to

CF air (Fig. 3). Such a decrease might be expected to

lead to decreased leaf respiration. However, small in-

creases in hybrid poplar leaf respiration were reported

between 7 and 35 days of exposure to high [O3]

( � 125 ppb) in growth chambers (Reich, 1983). How-

ever, when examined across all 57 independent obser-

vations, a significant decrease in respiration of 16% (CI

3–30%) due to elevated [O3] of 75 ppb relative to CF air

was found (Fig. 3). This is, therefore, consistent with the

observed decrease in sucrose content.

How might these reductions be affected by other
atmospheric and climatic variables?

Although it is expected that the impacts of elevated [O3]

may not be as pronounced under elevated [CO2] due to

decreased stomatal conductance and decreased O3 up-

take, no significant interaction was evident across the

studies. This may be the result of the small sample size

and, therefore, inadequate statistical sensitivity (Tables

2 and 5). However, no significant interaction between

elevated [O3] and elevated [CO2] in assessing biomass

and NPP has been found in the Aspen-FACE study

(Valkama et al., 2007). As O3 uptake is also decreased by

other factors that decrease stomatal conductance such

as drought and low nitrogen, these might also be

expected to lessen impacts of rising [O3]. While this

may be the case, averaged across all peer-reviewed

studies of these interactions, there was no evidence

for such an offset (Tables 2 and 5). This lack of evidence,

when the data is viewed as a whole, does suggest the

need for caution in assuming that increasing [CO2] and

drought incidence will provide protection against rising

[O3] – because as shown here, field evidence is lacking.

Long-term investigations on mature trees grown in

open-air conditions centered on elucidating the interac-

tion of O3 with other changing climatic variables such as

elevated [CO2], drought and temperature are essential

to develop more accurate projections of the impacts of

rising [O3] on forest trees.

Conclusion

While model projections have suggested that rising

tropospheric [O3] will decrease the ability of temperate

forests to act as a continuing sink offsetting net emis-

sions of CO2 to the atmosphere, experimental evidence

has been uncertain due to variation between locations,

species and methods. Here, by examining the entirety of

the peer-reviewed literature, it is shown that current

[O3] is already decreasing biomass growth by 7% and

therefore carbon storage, relative to clean air. As [O3]

continues to rise, further decreases of 11% and 17% are

predicted to occur by 2050 and 2100, respectively. As the

northern temperate forest is considered, the major cur-

rent terrestrial sink partially offsetting net CO2 emis-

sions, [O3] will therefore accelerate the rate of rise in

[CO2]. Almost all studies of [O3] effects on trees have

considered species and habitats north of the tropics.

While the northern temperate zone is projected to see

some of the highest future levels of [O3], large increases

in the tropics are also forecast across this century. If

effects parallel to those observed in temperate trees,

then there is the risk that the world’s forest ecosystems

may change from net sink to net source of CO2.
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Appendix B

The between-group heterogeneity (QB) evaluated using resam-

pling tests with 64 999 iterations to generate a randomized

probability value for the total biomass, leaf biomass, above-

ground woody biomass, shoot biomass, root biomass, height

and diameter of all trees exposed to ambient [O3] relative to

charcoal filtered controls in a weighted random-effects meta-

analysis with categorical structure. P-valueso0.05 are consid-

ered significant.

Table B1

Results of the categorical meta-analysis of the effects of ambient

ozone concentrations ([O3]) relative to charcoal filtered con-

trols on height and diameter including the degrees of freedom

(df), mean [O3] in the treatment and control (mean [O3] XT/

XC), effect sizes and upper and lower confidence intervals (CI).

Table B2

The percent change in transpiration, respiration, total chloro-

phyll content, chlorophyll a content, chlorophyll b content,

chlorophyll a/b ratio, leaf nitrogen content, sucrose content

and starch content � 95% bootstrapped confidence intervals

for all trees exposed to ambient ozone concentrations ([O3])

relative to ambient [O3] controls. Degrees of freedom and

mean [O3] are given along the y-axis.

Table B3

Appendix C

Results of the categorical meta-analysis of the effects of elevated

ozone concentrations ([O3]) relative to charcoal filtered con-

trols on leaf biomass, aboveground woody biomass, shoot

biomass, root biomass, height and diameter including the

degrees of freedom (df), mean [O3] in the treatment and

control (mean [O3] XT/XC), effect sizes and upper and lower

confidence intervals (CI).

Table C1

Appendix D

Results of the categorical meta-analysis of the effects of elevated

ozone concentrations ([O3]) relative to ambient [O3] controls

on leaf biomass, shoot biomass, root biomass and diameter

including the degrees of freedom (df), mean [O3] in the

treatment and control (mean [O3] XT/XC), effect sizes and

upper and lower confidence intervals (CI).

Table D1

Table B1

Genera

Tree

classification

Rooting

volume

Fumigation

method

Total

experiment

duration

Current

year

duration

Additional

treatment

Total biomass 6.085 0.228 1.030 0.066 3.297 1.424 0.569

Leaf biomass 8.523 4.630 0.150 0.009 2.341 2.954 0.010

Leaf area biomass 0.653 0.476 0.006 0.265 17.371 2.594 0.099

Aboveground

woody biomass

3.920 3.317 3.729 – 1.392 1.610 1.052

Shoot biomass 8.329 2.868 2.898 0.002 2.022 3.909 0.602

Root biomass 16.239 3.174 8.019 0.250 3.622 0.969 1.201

Root-to-shoot ratio 6.118 1.379 2.945 0.134 1.592 0.307 0.115

Height 29.284** 0.844 3.311 0.017 9.816 4.504 –

Diameter 29.625* 2.100 2.378 – 6.309 4.434 –

*Po0.05; **Po0.01; ***Po0.001.
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Table B2

Variable Category Categorical level df Mean [O3] XT/XC Effect size Lower CI Upper CI

Height Genera Acer 1 41/14 2.577 1.063 4.032

Betula 1 24/5 0.963 0.890 0.978

Liriodendron 7 43/19 1.051 0.935 1.168

Picea 3 24/5 0.894 0.792 0.983

Pinus 19 36/18 1.000 0.936 1.043

Populus 2 42/20 0.785 0.738 0.916

Prunus 8 42/19 1.073 0.919 1.094

Quercus 1 45/18 1.045 1.021 1.220

Diameter Genera Acer 1 41/14 1.145 1.144 1.200

Betula 1 24/5 0.861 0.824 0.872

Liriodendron 7 43/19 0.946 0.871 1.001

Picea 2 24/5 1.170 0.600 1.250

Pinus 16 35/18 1.010 0.946 1.058

Populus 2 42/20 0.835 0.769 0.871

Prunus 8 42/19 1.081 0.847 1.105

Table B3

*Photosynthesis and stomatal conductance values taken from Wittig et al. (2007).
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Table C1

Variable Category Categorical Level df

mean [O3]

XT/XC

Effect

size

Lower

CI

Upper

CI

Leaf biomass Genera Alnus 2 57/25 0.764 0.594 0.984

Betula 11 82/12 1.031 0.923 1.130

Citrus 3 82/10 0.867 0.767 0.936

Liriodendron 6 94/17 0.885 0.845 0.932

Percea 1 82/10 0.650 0.400 0.818

Picea 7 64/21 1.122 1.096 1.152

Pinus 49 81/15 0.955 0.908 1.005

Populus 60 71/9 0.789 0.690 0.881

Prunus 8 79/26 0.844 0.668 0.981

Quercus 1 86/18 0.957 0.921 0.978

Sequoiadendron 1 150/0 1.074 1.057 1.091

Tree classification Angiosperm 102 75/12 0.837 0.777 0.892

Gymnosperm 57 83/16 0.985 0.939 1.033

Rooting volume (RV,

in L)

o5 57 70/6 0.903 0.839 0.965

5 � RVo10 26 93/20 0.747 0.681 0.805

� 10 33 80/6 0.858 0.724 0.962

Ground 39 76/26 0.948 0.879 1.022

Total experiment

duration (TD, days)

o60 51 69/5 0.896 0.830 0.962

60 � TDo120 29 103/19 0.822 0.713 0.904

120 � TDo180 12 83/17 0.666 0.460 0.904

180 � TDo240 4 77/17 0.810 0.740 0.861

240 � TDo300 5 82/10 0.811 0.669 0.915

300 � TDo360 17 59/3 0.953 0.886 1.018

360 � TD 36 77/26 0.986 0.927 1.048

Aboveground

woody biomass

Genera Alnus 2 57/25 0.696 0.536 0.889

Betula 7 97/2 1.111 1.048 1.202

Liriodendron 6 94/17 1.017 0.820 1.200

Picea 1 64/21 1.000 0.976 1.024

Pinus 28 85/14 0.968 0.930 1.009

Populus 56 72/9 0.902 0.806 1.007

Prunus 4 60/9 1.310 0.525 1.982

Sequoiadendron 1 150/0 1.062 1.052 1.072

Experiment mean [O3]

(ppb)

o40 7 27/5 1.304 1.031 1.631

40 � [O3]o60 20 50/6 0.959 0.811 1.179

60 � [O3]o80 43 65/5 0.911 0.801 1.009

80 � [O3] 41 118/20 0.899 0.823 0.968

Current year mean

[O3] (ppb)

o40 7 27/5 1.304 1.031 1.632

40 � [O3]o60 19 49/5 0.956 0.804 1.180

60 � [O3]o80 44 65/5 0.914 0.805 1.010

80 � [O3] 41 118/20 0.899 0.823 0.968

Shoot biomass Genera Alnus 2 57/25 0.734 0.569 0.935

Betula 7 97/2 1.090 1.019 1.192

Ceratonia 1 52/12 0.817 0.762 0.899

Liriodendron 6 97/17 0.932 0.809 1.096

Picea 1 64/21 1.118 1.083 1.141

Pinus 45 98/10 0.970 0.937 1.002

Populus 58 72/9 0.837 0.747 0.934

Prunus 4 60/9 0.845 0.668 1.000

Quercus 4 65/13 0.878 0.817 0.947

Sequoiadendron 1 150/0 1.071 1.061 1.080

Tree classification Angiosperm 92 73/10 0.881 0.824 0.939

Gymnosperm 47 102/10 0.978 0.944 1.009

Root biomass Genera Alnus 2 57/25 0.734 0.581 0.866
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Table C1. (Contd.)

Variable Category Categorical Level df

mean [O3]

XT/XC

Effect

size

Lower

CI

Upper

CI

Betula 12 117/1 1.011 0.886 1.136

Liriodendron 6 97/17 0.903 0.820 1.054

Picea 1 64/21 1.008 0.955 1.059

Pinus 42 99/9 0.930 0.893 0.965

Populus 56 72/9 0.747 0.655 0.842

Prunus 4 60/28 0.618 0.507 0.771

Quercus 1 86/18 0.932 0.917 0.937

Sequoiadendron 1 150/0 0.979 0.960 0.998

Tree classification Angiosperm 87 80/10 0.789 0.721 0.857

Gymnosperm 46 100/9 0.930 0.894 0.964

Height Genera Acer 1 72/14 1.916 1.000 3.395

Betula 19 91/5 1.056 1.020 1.096

Liriodendron 1 63/10 1.227 1.003 1.441

Pinus 23 97/15 0.994 0.956 1.028

Populus 28 86/13 0.872 0.833 0.908

Prunus 4 60/9 0.997 0.788 1.012

Quercus 1 86/18 1.090 1.083 1.090

Fumigation method Growth chamber 17 116/1 1.093 1.023 1.158

Greenhouse 3 170/0 0.992 0.935 1.026

Open-top chamber 58 75/16 0.995 0.965 1.016

Diameter Genera Acer 1 72/14 1.063 0.880 1.068

Betula 1 62/8 1.129 1.082 1.167

Liriodendron 1 63/10 1.053 1.005 1.076

Pinus 17 85/18 0.976 0.936 1.015

Populus 18 62/3 0.950 0.901 0.996

Prunus 4 60/9 0.899 0.735 0.971

Fumigation method Growth chamber 3 131/4 1.101 0.726 1.153

Open-top chamber 43 66/11 0.960 0.929 0.990

Total experiment

duration (TD, days)

o60 18 64/3 0.994 0.941 1.049

60 � TDo120 5 95/5 0.983 0.880 1.099

120 � TDo180 4 81/14 0.820 0.676 0.995

180 � TDo240 7 70/19 0.969 0.862 1.089

240 � TDo300 1 38/10 0.667 0.125 3.576

300 � TDo360 1 74/21 0.954 0.337 2.706

360 � TD 6 70/21 1.014 0.897 1.147
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Table D1

Variable Category Categorical level df

Mean [O3]

XT/XC

Effect

size

Lower

CI

Upper

CI

Leaf biomass Tree classification Angiosperm 58 66/36 0.876 0.8004 0.9483

Gymnosperm 45 72/37 1.0518 0.9699 1.142

Root biomass Genera Betula 20 42/27 0.8668 0.7638 0.9838

Liriodendron 4 92/51 1.2304 1.0853 1.6096

Picea 9 47/26 0.9762 0.8039 1.1698

Pinus 20 57/31 0.9794 0.9051 1.059

Populus 15 64/44 0.8875 0.8161 0.9585

Prunus 4 60/34 0.6174 0.4908 0.7629

Quercus 1 86/45 1.0095 1.0047 1.0185

Diameter Genera Acer 1 72/41 0.9255 0.7333 0.9338

Betula 22 40/26 0.9366 0.8847 0.9943

Liriodendron 1 63/40 1.1182 1.0899 1.1723

Picea 7 23/43 1.0308 0.9921 1.0763

Pinus 19 63/34 1.0269 0.9756 1.1037

Populus 48 53/37 0.9134 0.8919 0.9367

Prunus 4 60/34 0.8434 0.7868 0.9069

Tree classification Angiosperm 81 51/34 0.9221 0.901 0.9442

Gymnosperm 27 57/31 1.0283 0.9892 1.0811

Rooting volume

(RV, in L)

o5 3 51/30 0.8429 0.7797 0.9016

5 � RVo10 14 49/31 1.0181 0.9865 1.0516

� 10 17 67/36 1.0267 1.0004 1.0544

Ground 72 50/33 0.9218 0.8987 0.9479

Fumigation method Growth chamber 2 36/28 1.0283 0.9916 1.0672

Open-top chamber 46 59/33 0.9746 0.9337 1.0186

Free-air enrichment 58 48/33 0.917 0.8954 0.9413
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