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Elevated tropospheric ozone remains an important phytotoxic air pollutant over large areas of US forests.

Abstract

Tropospheric ozone (O3) was first determined to be phytotoxic to grapes in southern California in the 1950s. Investigations followed that
showed O3 to be the cause of foliar symptoms on tobacco and eastern white pine. In the 1960s, ‘‘X’’ disease of ponderosa pines within the
San Bernardino Mountains was likewise determined to be due to O3. Nearly 50 years of research have followed. Foliar O3 symptoms have
been verified under controlled chamber conditions. Studies have demonstrated negative growth effects on forest tree seedlings due to season-
long O3 exposures, but due to complex interactions within forest stands, evidence of similar losses within mature tree canopies remains elusive.
Investigations on tree growth, O3 flux, and stand productivity are being conducted along natural O3 gradients and in open-air exposure systems to
better understand O3 effects on forest ecosystems. Given projected trends in demographics, economic output and climate, O3 impacts on US
forests will continue and are likely to increase.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Tropospheric ozone background concentrations have
increased 36% since pre-industrial times (IPCC, 2001). These
increases are driven by rising emissions of oxidized nitrogen
(NOx) and volatile organic compounds from fossil fuel com-
bustion (Finlayson-Pitts and Pitts, 1997; Fowler et al., 1998;
Ryerson et al., 2001) as these compounds act as precursors
to O3 formation.

Ozone is known to impact forest trees in many ways includ-
ing inducing visible foliar symptoms (Chappelka et al., 1999a;
Schaub et al., 2005), decreasing foliar chlorophyll content
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(Reich, 1983), accelerating leaf senescence (Reich and Las-
soie, 1985; Stow et al., 1992; Pell et al., 1999), decreasing
photosynthesis (Barnes, 1972; Reich, 1983; Coleman et al.,
1995a), increasing respiration (Reich, 1983; Noormets et al.,
2001), altering carbon allocation (Friend and Tomlinson,
1992; Coleman et al., 1995b), water balance (Panek, 2004),
and epicuticular wax composition and structure (Mankovska
et al., 1998, 2005; Percy et al., 2002), affecting canopy archi-
tecture (Dickson et al., 2001), predisposing trees to attack by
pests (Stark et al., 1968; Karnosky et al., 2002), and decreas-
ing growth and productivity (Wang et al., 1986a,b; Karnosky
et al., 1996) and fitness (Berrang et al., 1986, 1989; Karnosky
et al., 2003b). Responses to O3 vary tremendously by species
(Davis et al., 1981), genotype (Steiner and Davis, 1979;
Karnosky and Steiner, 1981; Lee et al., 2002), leaf age (Davis
and Wood, 1973) and leaf position in canopy (Schaub et al.,
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2005). Responses can also be altered by environmental factors
such as soil moisture (Grulke et al., 2003), temperature (Davis
and Wood, 1972; Chappelka et al., 1990), light intensity (Fred-
ericksen et al., 1996), and nutrient availability (Tjoelker and
Luxmoore, 1991).

Over the past 50 years, a large volume of literature has
documented O3 impacts on forest trees (see reviews by Kickert
and Krupa, 1990; Miller, 1993; Skelly et al., 1997; Chappelka
and Samuelson, 1998; McLaughlin and Percy, 1999; Krupa
et al., 2000; Bytnerowicz et al., 2003; Percy et al., 2003). In
this review, we examine O3 effects on a number of ecologi-
cally and commercially important North American tree spe-
cies that have been thoroughly studied over the past five
decades, and we discuss remaining research needs.

2. Early history

Two mysterious diseases of conifers, ‘‘X’’ disease of pon-
derosa pine (Pinus ponderosa) in southern California and east-
ern white pine (Pinus strobus) needle blight (Linzon, 1960;
Hepting and Berry, 1961) were linked to O3 in the 1960s
(Miller et al., 1963; Linzon, 1966; Richards et al., 1968; Do-
chinger and Heck, 1969; Costonis and Sinclair, 1969). A flurry
of research triggered by this pioneering research confirmed
early results linking O3 to these two diseases for western co-
nifers (Miller and Millecan, 1971; Evans and Miller,
1972a,b) and eastern white pine (Dochinger and Seliskar,
1970; Dochinger et al., 1970; Costonis, 1970; Houston, 1974).

The link of adverse effects of O3 beyond visible symptoms
and reduced growth to whole ecosystem change was made by
Stark et al. (1968) who demonstrated that O3 predisposed trees
to mortality-causing insects and by Dr Paul Miller and his col-
leagues (Miller, 1973; Taylor and Miller, 1973) who showed
that O3 differentially affected the survival of various tree spe-
cies, thus resulting in community change. This early research
paved the way for the next 50 years of research on O3 effects
on the forests of southern California (summarized in Miller
and McBride, 1999), led by the USFS Pacific Southwest Re-
search Station (Dr Paul Miller) and Statewide Air Pollution
Research Center at University of California, Riverside (Dr
O.C. Taylor).

Simultaneously, in the eastern US major research programs
to examine the impacts of O3 on forest trees were begun at The
Pennsylvania State University (Dr Al Wood), the Boyce
Thompson Institute (Dr Len Weinstein and Dr Jay Jacobson),
and the USFS Northeastern Forest Experiment Station in Del-
aware (Dr Leon Dochinger). Smaller programs were initiated
at universities and state and federal agencies throughout the
eastern United States. These programs flourished in the
1970s during the early EPA research mandate to establish air
quality guidelines for O3 and again in the 1980s during the
NAPAP Program where researchers examined possible links
between acid rain and O3 impacts. Beginning in the 1990s,
the Forest Response Program of the US Forest Service also
provided a boost to O3 research on forest trees across the
US. This program later became part of the current US Forest
Service Global Change Program, which is part of the US Na-
tional Global Change Initiative.

3. Case studies

3.1. Eastern white pine

Eastern white pine, a commercially important tree species
for lumber, pulp, and Christmas trees, is distributed across
southern Canada and the northeastern US from Maine to Min-
nesota south to Georgia. Throughout the range, reports of fo-
liar symptoms attributable to O3, or to mixtures of O3 and SO2,
were reported over two decades starting in the early 1960s
(Berry and Ripperton, 1963; Hepting, 1968; Costonis and Sin-
clair, 1969; Dochinger et al., 1970; Berry, 1973; Duchelle
et al., 1983).

Symptomatic eastern white pine trees were referred to in
a number of ways in the early literature including having fo-
liage with needle blight (Costonis and Sinclair, 1969), emer-
gence tipburn (Fig. 1C,D, Berry and Ripperton, 1963), semi-
mature needle blight (Linzon, 1967), and chlorotic dwarf
(Fig. 1A,B; Dochinger et al., 1970). While some authors ar-
gued that factors other than O3 may have been involved in
symptom induction, including foliar pathogens (Linzon,
1967; Dreisbach and Merrill, 1989), the consensus in the liter-
ature was that O3 was likely involved in causing the wide-
spread symptoms.

3.1.1. Symptomatology
Early symptoms on eastern white pine needles included

collapse of palisade cells adjacent to stomata, forming light
colored flecks that radiate from the stomata (Costonis and Sin-
clair, 1969; Costonis, 1970). Following the injury to the pali-
sade cells, chlorophyll destruction occurs leading to larger,
more visible chlorotic flecks characteristic of O3-induced
symptoms.

Symptoms are initiated on young, developing needles in
early to mid-summer. Depending on the sensitivity of individ-
ual trees, symptoms sometimes advance from the chlorotic
fleck into pink lesions, and then to brown necrotic bands on
the needle followed by a spreading orange or red necrosis to
the needle tip (Fig. 1). Tolerant trees are generally asymptom-
atic. Affected needles tend to senesce prematurely after only
one or two growing seasons while needles on tolerant trees
often remain on the trees for 3e5 years (Costonis, 1970).
The most sensitive genotypes tend to have short, stunted
needles, poor needle retention, and only minimal height and
diameter growth each year (Dochinger et al., 1970).

3.1.2. Physiological effects
Eastern white pine varies in its O3 sensitivity (Houston and

Stairs, 1973; Houston, 1974; Hayes and Skelly, 1977; Thor
and Gall, 1978; Fig. 1). For O3-sensitive genotypes, it has
been documented that O3 at relatively low levels decreases
the capacity of these trees to photosynthesize (Botkin et al.,
1972; Mann et al., 1980; McLaughlin et al., 1982). In addition,
increased dark respiration, decreased translocation, and
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Fig. 1. Examples of emergence tipburn (A) and chlorotic dwarf (B) on eastern white pine in southern Ohio. Tipburn symptoms of O3 exposure on eastern white pine

from ambient air in southern Wisconsin (C) and verified on grafted O3-sensitive clones (left in D) following fumigation with 100 ppb O3 for 6 h. (Photo credits:

A,B,C: David Karnosky; D: Daniel Houston.)
reduced amounts and longevity of foliar biomass contribute to
altering the carbon economy of O3-sensitive eastern white pine
trees (McLaughlin et al., 1982). Reduced mean annual radial
increment growth has also been documented for O3-sensitive
trees exposed to ambient O3 (Benoit et al., 1982). The reduced
growth of O3-sensitive genotypes exposed to long-term O3 ex-
posure results in decreased competitive ability of the O3-sen-
sitive genotypes, leading to increased mortality (Karnosky,
1980), especially when these trees are competing against
more tolerant trees.

3.1.3. Genetic implications
While white pine mortality linked to O3 stress is not large

in terms of the species total growing stock (as O3 sensitive ge-
notypes do not make up a large proportion of all eastern white
pine genotypes), consequences of the loss of O3-sensitive ge-
notypes may still be significant. In fact, hypersensitive individ-
uals may no longer be observed in much of the eastern US
(Bennett et al., 1994). Certainly, this represents Stage I of nat-
ural selection: the elimination of sensitive genotypes (Brad-
shaw and McNeilly, 1989). However, it is not known if these
trees carried any useful rare alleles that would be beneficial
in the future that would not be retained in O3-tolerant geno-
types (Karnosky et al., 1989).
3.2. Ponderosa pine

Ponderosa pine, a widely distributed western conifer rang-
ing from northern Mexico, northward to the Canadian Rocky
Mountains, and east to the Black Hills of South Dakota and
western Oklahoma, is also sensitive to O3. The first detection
of O3-induced foliar symptoms on ponderosa pine was made
in southern California (Miller et al., 1963; Miller, 1969; Miller
and Millecan, 1971). Ponderosa pines growing in the San Ber-
nardino Mountains, which are downwind of the Los Angeles
Air Basin, were particularly affected.

3.2.1. Symptomatology
Chlorotic mottle, but not tip burn, dominates the symptoms

of O3 exposure to ponderosa pine (Evans and Miller, 1972a;
Miller et al., 1996; Fig. 2). The mottle frequently appears in
the one-third of the needle surface nearest the tip on 1-year-
old or older needles, and progresses basipetally until the entire
needle is affected (Miller et al., 1963). Shortened needles and
premature needle loss resulting in thin canopies (Fig. 2) also
characterize O3-induced injury on sensitive ponderosa pine
trees (Miller et al., 1996). In contrast to the rather widely
scattered occurrence of O3-caused symptoms on eastern white
pine, the extreme nature of the O3 events in the San
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Fig. 2. (A) Photochemical oxidant haze over the San Bernardino Mountains. Visible symptoms of O3 injury to ponderosa pine foliage is dominated by chlorotic

mottle (B) and premature needle loss leading to thin canopies (Y) in (C). O3-stressed trees are attacked and killed by bark beetles whose exit holes are shown in

(D). (Photo credits: David Karnosky.)
Bernardino Mountains in the 1960s and 1970s resulted in
widespread damage to a large portion of the ponderosa pine
trees in the San Bernardino National Forest.

3.2.2. Physiological effects
Studies of O3-induced effects on ponderosa pine seedlings

suggest that long-term O3 exposure can have significant effects
on photosynthetic capacity (Beyers et al., 1992). Negative
carry-over effects of O3 on root growth and carbohydrate con-
centrations of ponderosa pine seedlings have been found in
subsequent growing seasons (Andersen et al., 1997). Further-
more, it is well documented that O3-stressed ponderosa pines
in the San Bernardino Mountains suffer from subsequent at-
tack by bark beetles (Stark and Cobb, 1969; Jones et al.,
2004), leading to mortality. This long-term case study has pro-
vided compelling evidence for the important role of O3 in pre-
disposing trees to other biotic or abiotic stressors.

3.2.3. Ecosystem effects and long-term trends
McLaughlin and Percy (1999) concluded that changes in

depth and vigor of root systems, shifts in C pool sizes and C
allocation patterns, and changes in supply rates of N and Ca,
caused by O3 and acidic deposition (singly or in combination),
represent key shifts in ecological function in diverse forest
types across large geographic areas in North America. Differ-
ential mortality of O3-sensitive species, such as ponderosa
pine and Jeffrey pine, has been implicated as one of the mech-
anisms leading to shifts in species composition and commu-
nity structure in O3-stressed western pine forests (McBride
et al., 1985). As with eastern white pine, there may be selec-
tion occurring for O3 tolerance within these two western coni-
fers, although it has not been proven that actual changes in
gene frequency have occurred (Patterson and Rundel, 1995).
Decreasing maximum hourly O3 concentrations in the San
Bernardino Mountains during 1963 to 1999 suggest that the
rigorous air quality standards of southern California are having
a positive impact on O3 maxima in the region. However, these
areas still receive relatively high concentrations of O3; in ad-
dition, they also are subjected to high amounts of N deposition
(Fenn and Bytnerowicz, 1993; Bytnerowicz, 2002), which
may confound the O3 responses.

3.3. Trembling aspen

Trembling aspen (Populus tremuloides) is the most widely
distributed tree species in North America, ranging from across
Canada and Alaska south throughout the mountainous regions
and east through the midwestern and northeastern US. First
shown to be sensitive to O3 by Karnosky (1976, 1977), this
species has been the subject of extensive study by many re-
search groups over the past 30 years (Wang et al., 1986a;
Greitner et al., 1994; Karnosky et al., 1996; Clark et al.,
1996; Yun and Laurence, 1999; Percy et al., 2002).

3.3.1. Symptomatology
Unlike many broad leaf tree species for which O3-caused

symptoms are generally upper leaf surface black or red stipple
(Skelly et al., 1979), the first O3-induced symptoms to appear
on trembling aspen leaves are generally moderate to large
black necrotic areas which extend across the veins and are bi-
facial in nature (Karnosky, 1976; Fig. 3). As with most trees,
physiological maturity and senescence of foliage are acceler-
ated by O3 (Greitner et al., 1994).

3.3.2. Physiological effects
There is considerable genetic variation in aspen in response

to elevated O3 (Karnosky, 1976, 1977; Wang et al., 1986a;
Karnosky et al., 1996, 2005; Yun and Laurence, 1999). For
sensitive genotypes, O3 adversely affects carbon gain by de-
creasing photosynthesis (Coleman et al., 1995a; Clark et al.,
1996), degrading chlorophyll (Gagnon et al., 1992), reducing
Rubisco (Noormets et al., 2001), increasing respiration (Noor-
mets et al., 2001), and altering carbon allocation (Coleman
et al., 1995b). Ozone causes adverse effects on most compo-
nents of growth of aspen (Wang et al., 1986a; Karnosky
et al., 1996, 2003a, 2005), but root growth appears to be
most severely impacted (Coleman et al., 1996; Karnosky
et al., 1996). Aspen trees stressed by O3 are subject to more
severe attack by foliar pathogens such as rust caused by
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Fig. 3. (A) The differential effects of ambient O3 on aspen tree growth can be seen in these three southern Wisconsin clones growing in southern New York where

O3 levels are quite high. The two tree plots represent 10-year-old sensitive (left), intermediate (middle) and tolerant (right) genotypes that grew at similar rates

under low O3 exposure in southern Wisconsin (from Karnosky and Thakur, 2004). (B) Typical O3-induced symptoms including bifacial necrosis on an O3-sensitive

genotype grown in southern Wisconsin. (Photo credits: David Karnosky.)
Melampsora medusae (Karnosky et al., 2002). This predispo-
sition is most likely because O3 also negatively impacts leaf
surface waxes (Mankovska et al., 1998, 2003, 2005; Percy
et al., 2002) making the leaves more wettable and, therefore,
creating a more conducive microenvironment for spore germi-
nation and subsequent infection by fungi.

3.3.3. Genetic implications
Because O3 differentially impacts aspen growth (Karnosky

et al., 1996, 2003a; Percy et al., 2002; Fig. 3), competitive
ability (McDonald et al., 2002), and fitness (Karnosky et al.,
2003b), it is not surprising then that O3-induced natural selec-
tion may have already impacted aspen populations in areas
that have had relatively high O3 exposures (Berrang et al.,
1986, 1989, 1991). Again, rare alleles or useful genetic infor-
mation may have been lost.

3.4. Black cherry

Black cherry (Prunus serotina), highly valued for its red
heartwood that makes attractive lumber for furniture, paneling,
and many other uses, is widely distributed in the eastern one-
half of the US from Florida through the northern Lake States
to Maine. Black cherry is also found in scattered populations
in a large region of the southwestern US through Mexico.
Long known to be relatively sensitive to O3 (Davis et al.,
1981), black cherry is highly variable in its response to O3

(Lee et al., 2002), but it has a significant portion of individuals
that have been reported to show visible foliar symptoms from
O3 (Simini et al., 1992; Hildebrand et al., 1996; Chappelka
et al., 1997, 1999a).

3.4.1. Symptomatology
Ozone-induced symptoms on black cherry are classic adax-

ial reddish-purple, black, or purple-black pigmentation ex-
pressed as stipple and premature leaf drop (Davis et al.,
1981; Skelly, 2000; Fig. 4). These symptoms can be initiated
by O3 exposures consisting of 4e8 h of 100 ppb or 2 h of
190 ppb in chambers (Davis et al., 1981), but generally trees
need greater exposures in the field as evidenced by the first
visible symptoms being observed in mid to late August after
SUM00 O3 doses of 37.3e39.7 ppmh (Schaub et al., 2005).

3.4.2. Physiological effects
The uptake of O3 affects black cherry photosynthesis and

conductance, generally decreasing both, especially late in
the growing season (Schaub et al., 2005). Light environment
(Fredericksen et al., 1996), seed source (Lee et al., 2002),
and leaf age (Fredericksen et al., 1995) all affect the magni-
tude of O3-induced responses in black cherry. Season-long ex-
posures to lower O3 concentrations have been shown to have
significant adverse effects on black cherry seedling growth
and biomass production (Davis and Skelly, 1992; Neufeld
et al., 1995; Rebbeck, 1996; Lee et al., 2002). Significant
growth decline related to O3 visible symptoms in mature trees
remains more elusive to demonstrate (Somers et al., 1998).

3.5. Eastern hardwoods

Forested land comprises approximately 30% of the total
land area in the eastern US with 74% of it in hardwoods,
and the remainder in conifers (Powell et al., 1992). Several
major National Parks in the eastern US that are densely for-
ested with eastern hardwoods are the Great Smoky Mountains
National Park in Tennessee and North Carolina, Shenandoah
National Park in Virginia and Acadia National Park in Maine.
Ozone has been demonstrated to have an impact on several
hardwood tree species found in the eastern US (Neufeld
et al., 1992; Simini et al., 1992; Hildebrand et al., 1996;
Chappelka et al., 1999b; Skelly et al., 1997; Chappelka and
Samuelson, 1998).
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Fig. 4. Upper leaf surface stipple, red to black are the typical first symptoms of O3 effects on many tree species including black cherry from ambient O3 in northern

Indiana (A). Individual stipple points generally involve mortality of palisade layer cells (blackened cells in cross section in (B) shown here for black cherry after

artificial O3 fumigation. (C) Genetic differences in O3 tolerance are large in black cherry as demonstrated in this photo of three genotypes (S, sensitive; I, inter-

mediate; and T, tolerant) differing in O3 tolerance. (Photo credits: A,B: David Karnosky; C: John Skelly.)
3.5.1. Symptomatology
Ozone symptoms on hardwood species are generally ex-

pressed as a tan, red, brown, or purple, upper-surface stipple.
Visible symptoms of O3 have been reported on both seedlings
and saplings (Duchelle et al., 1983; Neufeld et al., 1992; Simini
et al., 1992), as well as mature trees (Hildebrand et al., 1996;
Chappelka et al., 1999b). Results from these studies need to
be interpreted with caution, since the extent and magnitude of
visible injury is influenced by micro-meteorological conditions,
including vapor pressure deficit, light, temperature and soil
moisture (Winner et al., 1989; Showman, 1991; Hildebrand
et al., 1996; Lefohn et al., 1997; Chappelka and Samuelson,
1998), elevation (Chappelka et al., 1999a) and time of year
(Chappelka et al., 1997).

3.5.2. Physiological effects
Physiological sensitivity to ambient O3 has been observed

in a comparatively small number of eastern hardwood tree spe-
cies. However, reports indicate exposure to O3 has the poten-
tial to cause reductions in photosynthesis and disruptions in
carbohydrate allocation patterns (Reich and Amundson,
1985; Chappelka and Chevone, 1992; Chappelka and Samuel-
son, 1998; Samuelson and Kelly, 2001).

Reich and Amundson (1985) concluded that ambient O3

levels typically found in the eastern US likely reduced leaf
net photosynthetic rates in trees. However, these effects can
be confounded by various factors including tree maturity,
leaf structure, leaf longevity, plant defensive mechanisms,
and within species variation (Skelly et al., 1997; Samuelson
and Kelly, 1997; Chappelka and Samuelson, 1998; Samuelson
and Kelly, 2001).

Ollinger et al. (1997) used a canopy-to-stand-level model to
predict forest response to O3. Using a variety of data collected
on ozone uptake (Reich, 1987), relationships between photo-
synthesis and O3 levels were developed. In addition, different
levels of soil moisture were introduced into the model. Initial
results indicated a decrease in net primary productivity (NPP)
from 3 to 16% with a mean decrease in NPP of 7%. Greatest
reductions were found in the southern portions of the eastern
US where O3 concentrations and potential photosynthesis
were the greatest. Reductions were greatest on sites with
greater water holding capacity, supporting the findings of Le-
fohn et al. (1997). Patterson et al. (2000) reported that O3 up-
take by several mature tree species was reduced by low soil
moisture. However, recent research indicates that the effects
of O3 on water use and growth may be exacerbated by low
soil moisture in certain tree species (McLaughlin et al.,
2002) suggesting the Ollinger et al. (1997) model may not ef-
fectively predict O3 responses for some situations. Recent
modeling efforts by Hanson et al. (2005) that incorporate re-
sults from a diverse set of O3, CO2, temperature, and precipi-
tation experiments have underscored the need for long-term
field experiments to evaluate eastern hardwood forest ecosys-
tems response to complex environmental scenarios.

3.5.3. Genetic implications
One question that remains unanswered is whether or not de-

creases in growth and biomass production are related to visible
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foliar symptoms. The majority of the literature indicates that
these phenomena are not necessarily related (Pye, 1988; Chap-
pelka and Chevone, 1992; Chappelka and Samuelson, 1998).
Karnosky and Steiner (1981) reported family and geographic
differences in foliar injury response to O3 in green (Fraxinus
pennsylvanica) and white ash (F. americana) seedlings. No re-
lationships to growth were established in this study. However,
correlative studies suggest that visible injury and growth re-
ductions may be related in some cases. Based on research
where visible symptoms of O3 injury were characterized on
large, mature yellow-poplar (Liriodendron tulipifera) and
black cherry trees in Great Smoky Mountains National Park
(Chappelka et al., 1999b), Somers et al. (1998) compared ra-
dial growth differences among trees classified as sensitive or
non-sensitive to O3 based on the severity of visible foliar in-
jury observed over a 3-year time-frame. Significantly more ra-
dial growth occurred for the non-sensitive yellow-poplar
compared with the sensitive yellow-poplar trees over both
a 5- and 10-year period. Since this study was not a controlled
experiment and was limited in the number of trees used, there
was no way to prove a causeeeffect relationship between vis-
ible foliar symptoms and subsequent growth losses. However,
these results indicate the possibility that O3 is related to
growth losses in some sensitive genotypes in yellow-poplar.
No relationship between visible foliar injury and growth was
observed with black cherry.

3.6. Southern pines

Southern pines are widely distributed in the US from
Florida, north to New Jersey and west to east Texas and Okla-
homa. There are 11 species of Pinus native to the southern US.
Loblolly (Pinus taeda), shortleaf (P. echinata) and slash pine
(P. elliottii) are the most important timber types. However,
other species such as longleaf (P. palustris) and Virginia
pine (P. virginiana) are very important from an ecosystem
management perspective. Many studies were conducted during
the late 1980s to early 1990s to establish causeeeffect rela-
tionships between O3 exposure and individual tree growth
with these pines. The bulk of the studies were conducted
within the framework of large multi-institutional cooperatives
(Kelly et al., 1993; Fox and Mickler, 1995). Most studies were
conducted in open-top chambers under adequate moisture con-
ditions and free from competition with other plants (Skelly
et al., 1997; Chappelka and Samuelson, 1998).

3.6.1. Symptomatology
In southern pines, O3 symptoms appear as chlorotic mot-

tling, necrotic banding or tip necrosis (Flagler and Chappelka,
1995). Chlorotic mottling is the most common symptom on
sensitive genotypes at low to moderate (<60 ppb) ozone con-
centrations (Flagler and Chappelka, 1995). Symptoms are
most common on recently expanded needles, although they
can occur on older, more mature tissue. Necrotic banding
and tip necrosis may become evident at higher concentrations
(80e100 ppb). As with eastern white pine, premature needle
senescence is also commonly induced by O3.
3.6.2. Physiological effects
In these pines, O3 has been shown to reduce carbon fixa-

tion, increase foliar and root respiration, alter patterns of my-
corrhizal colonization and cause shifts in allocation patterns of
carbon and nutrients (Qiu et al., 1992, 1993; Friend and
Tomlinson, 1992; Baker et al., 1994; Sasek and Flagler,
1995). Teskey (1995) reported that photosynthesis of loblolly
pine was negatively correlated with O3 exposure after a thresh-
old of 100 and 150 ppm h�1 was reached. The majority of this
research, however, was conducted with young trees and results
may differ as trees mature (Samuelson and Kelly, 2001).
Growth responses due to O3 remain more difficult to demon-
strate with southern pines (Neufeld et al., 2000).

3.6.3. Genetic implications
The existence of a large genetic variation in O3 responses in

loblolly pine has been reported (Kress et al., 1982; Winner
et al., 1987; McLaughlin et al., 1994). Similar variation has
also been observed in other commercially important southern
pines such as shortleaf and slash pine. Sensitivity in response
to O3 exposure ranged from very sensitive to tolerant based on
visible injury and growth. In addition, growth effects were ob-
served in some families in the absence of visible foliar injury
(Shafer and Heagle, 1989). However, all of these experiments
have been conducted under controlled conditions with young
trees (<5 years old). It is not known if O3 has had an effect
on resistance of this species under ambient conditions. Taylor
(1994), using data from the literature, examined loblolly pine
growth to O3 levels currently found in southeastern forests. He
reported O3 effects on growth would be expected to occur at
a growing-season 12 h mean of 45 ppb for �110 days. This
threshold is 15% below the mean exposures currently being
experienced in the South. Sensitive cohorts experienced
growth losses at a threshold of 25 ppb. These results indicate
that O3 has the potential to reduce growth of sensitive geno-
types at current ambient levels. Chappelka and Samuelson
(1998) and Teskey (1995) reported that these growth losses
probably range from 0 to 10% depending on the genotype.

4. Exposure systems and research strategies for
O3 studies of forest trees

The exposure systems and research strategies to study the
impacts of O3 on forest trees in the US have evolved dramat-
ically over the past 50 years (Fig. 5). Early studies utilized
a number of different forms of chambers inside growth rooms,
laboratories or greenhouses (Evans and Miller, 1972a,b; Davis
and Wood, 1973; Houston, 1974). These simple chamber stud-
ies with primitive O3 generation and monitoring systems were
valuable in demonstrating that O3 in relatively low concentra-
tions could elicit visible O3 symptoms on foliage (Berry and
Ripperton, 1963; Dochinger et al., 1970; Houston, 1974;
Karnosky, 1976). Later, continuously stirred tank reactors
(CSTRs) were developed (Heck et al., 1978) and became
commonly used indoor chambers, offering reliable and uni-
form O3 delivery and uniform environmental conditions ideal
for assessing foliar injury, as well as for physiological and
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Fig. 5. Over the years systems to fumigate forest trees with O3 have evolved from plastic chambers in the laboratory (A) to chambers in the greenhouse (B) to field

open-top chambers (C,D) to open-air field exposures (E,F). (Photo credits: David Karnosky.)
biochemical studies (Davis and Skelly, 1992; Lee et al., 2002).
Since these indoor chambers did not truly replicate field con-
ditions, and since trees in them had to be grown in pots, there
was a need to develop alternative field systems. Subsequently,
open-top chambers, developed for crop plants by Heagle et al.
(1973, 1979), began to be used for potted forest tree seedling
studies or with seedlings planted in the ground. These simple
but very useful open-top chambers were valuable in demon-
strating that background ambient O3 could elicit visible symp-
toms (Fredericksen et al., 1995) and reduce growth (Wang
et al., 1986a,b; Simini et al., 1989). They were also useful
in studies of the effects of ambient plus added O3 on growth
and biomass production (Shafer and Heagle, 1989; Neufeld
et al., 1992, 1995; Rebbeck, 1996).

Later, these open-top chambers were modified to include
larger diameters (to accommodate more seedlings), larger ver-
tical size (by stacking them) to accommodate larger saplings,
and/or covered with rain-exclusion tops to allow exclusion of
rainfall for studies of O3 � drought � rain interactions (Hog-
sett et al., 1985; Musselman and Hale, 1997). Open-top cham-
bers have been extremely valuable in studies of O3 effects on
physiological processes (Tingey et al., 1976) and on growth
and productivity (Chappelka et al., 1988; Kress et al., 1981;
Adams et al., 1990). A compilation of a number of expo-
sureeresponse studies with tree seedlings grown in open-top
chambers was used to model O3 impacts on eastern forest trees
(Hogsett et al., 1997). Unfortunately, tree seedlings grown in
open-top chambers were sometimes different than seedlings
of the same source and age growing at the same site, but
outside the chambers (Karnosky et al., 1996). This was most
likely because in some locations the chambers created a micro-
climate that was warmer, more humid, had less light, and less
wind than outside the chambers (Hendrey et al., 1999;
McLeod and Long, 1999; Karnosky et al., 2001). Therefore,
it became important to develop closer to reality field exposure
systems (Manning, 2005).

Several alternative systems were concurrently developed to
study the effects of O3 in the field. Branch chambers were
developed to allow studies of O3 effects on larger trees (Houpis
et al., 1991; Teskey et al., 1991; Thornton et al., 1994). These
were particularly useful in studies of gas exchange dynamics
(Grulke et al., 1996). The chemical ethylenediurea (EDU),
which acts as an O3 protectant (Roberts and Jensen, 1985;
Long and Davis, 1991), has been used to study O3 effects in
open-top chamber studies (Kuehler and Flagler, 1999) and in
the field (Ainsworth et al., 1996; Long and Davis, 1991).
Several authors have used dendrochronometer bands to study
daily diameter growth patterns and correlate those to ambient
O3 concentrations (McLaughlin and Bräker, 1985; McLaugh-
lin et al., 2002). Using this method, McLaughlin and Downing
(1995, 1996) implicated adverse effects of O3 on diameter
growth of mature loblolly pine trees in the southeastern US.

Natural O3 gradients also offer opportunities to examine the
impacts of O3 on forest trees although finding large O3 gradients
over relatively small areas is problematic. However, effects of am-
bient O3 have been successfully examined along natural O3 gra-
dients in both elevational gradients (Winner et al., 1989) and
regional gradients (Karnosky et al., 1999; Arbaugh et al., 2003).
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The examination of open-air systems for exposing trees to
O3 was first attempted in the UK using young conifers
(McLeod, 1995). Subsequently, Hendrey et al. (1989) showed
that a system similar to a free-air CO2 enrichment (FACE) sys-
tem could be used for delivering reliable concentrations of O3

to large plot sizes. Later, such a FACE system for exposing
trees to elevated CO2 and/or O3 was developed in northern
Wisconsin (Karnosky et al., 1999; Dickson et al., 2000).
This system has been used to expose aspen, aspen/birch and
aspen/maple ecosystems since 1998 (Karnosky et al., 2003a,
2005; Fig. 5E,F).

5. Interacting factors

Since the early discovery that O3 was linked to visible fo-
liar symptoms in the 1960s for western pine and eastern white
pine, it has been known that interacting factors can exacerbate
or ameliorate the adverse effects of O3 (Kress et al., 1981;
Kickert and Krupa, 1990; Isebrands et al., 2000). These factors
include tree age, genetic makeup, microclimate, nutrition,
competition, and co-occurring stresses such as insect and dis-
ease pests, other pollutants such as gaseous SO2 and acidic de-
position of various sulfur and nitrogen compounds, and most
recently, rising atmospheric CO2. Unfortunately, most studies
have been done on the effects of O3 alone, in studies of limited
genetic materials exposed at a single age in a single environ-
ment and without co-occurring stresses. Thus, scaling results
from these studies to complex forests growing over wide areas
and which are also being exposed to co-occurring stresses is
very difficult. In this section, we will briefly examine interact-
ing factors that can modify the impacts of O3 on forest trees.

5.1. Tree age

Since the vast majority of O3 impact studies on forest trees
have been done on seedlings or saplings, scaling impacts of O3

to forests composed of many age trees remains difficult (Kolb
and Matyssek, 2001). Studies comparing O3 effects on seed-
lings versus mature trees have shown larger amounts of visible
symptoms in mature trees for the same cumulative O3 uptake
(Fredericksen et al., 1996), larger reductions in photosynthesis
in mature trees than seedlings (Rebbeck et al., 1993; Grulke
and Miller, 1994), and increased (Hanson et al., 1994) or de-
creased (Fredericksen et al., 1996) stomatal conductance in
mature trees, while others have shown no difference between
seedlings or mature trees in O3 effects on respiration (Wulls-
chleger et al., 1996), photosynthesis (Momen et al., 1997),
or diameter growth (Samuelson et al., 1996). Whether or not
seedlings are reasonable surrogates for trees in regard to O3

impacts remains an important research question that needs to
be addressed with more species (Kelly et al., 1995; Kolb
and Matyssek, 2001). Studies of the same genotypes will be
most useful in addressing this question so that genetic differ-
ences do not confuse the differences attributable to age.
Long-term O3 studies starting with seedlings, such as the As-
pen FACE project which began in 1998, are also excellent for
examining O3 responses as trees age.
5.2. Genetics

Since the earliest studies of O3 effects on eastern white
pine, scientists have been aware of the strong role in genetics
in determining O3 sensitivity (Berry and Ripperton, 1963; Do-
chinger and Seliskar, 1970; Houston and Stairs, 1973). The
role of genetics has been further shown with seed source trials
with several important tree species (Townsend and Dochinger,
1974; Steiner and Davis, 1979; Karnosky and Steiner, 1981;
Kress et al., 1982; Winner et al., 1987; Horton et al., 1990;
Richardson et al., 1992; Shafer et al., 1993; McLaughlin et al.,
1994; Taylor, 1994). With trembling aspen, genetic differences
in O3 sensitivity have been documented in clonal trials
(Karnosky, 1976; Berrang et al., 1986; Wang et al., 1986a;
Yun and Laurence, 1999; Isebrands et al., 2001; Karnosky
et al., 2005). Studies estimating heritability of O3 tolerance
further emphasize the strong genetic control of O3 sensitivity
(Houston and Stairs, 1973; Karnosky, 1977; Lee et al.,
2002). Furthermore, Staszak et al. (2004) have shown genetic
differences between O3 sensitive and tolerant ponderosa pine
trees via differences in allele frequencies using isozyme
analyses.

There are a number of important implications of the genetic
differences in O3 sensitivity or tolerance in a given species.
First, O3 can reduce the competitive fitness of sensitive geno-
types leading to stage 1 of natural selection, which is the elim-
ination of sensitive genotypes (Karnosky, 1980; Berrang et al.,
1986, 1989, 1991; McDonald et al., 2002; Karnosky et al.,
2003b). Second, studies comparing O3 impacts of multiple
species or examining interactions of O3 responses of any given
tree species with other factors should be done with multiple
genotypes or families so that genetic variation in responses
can be evaluated.

5.3. Microclimate

Environmental factors contributing to microclimate
changes in the forest can have important effects on O3 im-
pacts. For example, temperature (Davis and Wood, 1973;
Chappelka et al., 1990), light intensity (Volin et al., 1993;
Tjoelker et al., 1993, 1995; Fredericksen et al., 1996), and
soil moisture (Greitner et al., 1994; McLaughlin and
Downing, 1996; Panek et al., 2002; Panek, 2004) can all af-
fect O3 impacts on forest trees. Alternatively, O3 can also
alter forest tree responses to microclimate, as was demon-
strated by the decreased frost hardening of loblolly pine
seedlings (Chappelka et al., 1990). These complex interac-
tions of O3 and microclimate make it very difficult to
separate out O3 effects in large trees growing in natural
forest conditions (McLaughlin and Downing, 1995, 1996;
McLaughlin et al., 2002).

5.4. Nutrition

Forest trees generally grow in soil environments with less
than optimal nutrients. However, it is well known that anthro-
pogenic N deposition has increased N levels in large areas of
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the southwestern (Fenn et al., 1995; Bytnerowicz, 2002) and
northeastern US (Galloway, 1998; Galloway et al., 2002).
Ozone can exacerbate nutrient deficiencies by causing reduced
foliar nutrition via accelerated senescence (Greitner et al.,
1994) or reduced N acquisition and retranslocation (Samuel-
son et al., 1996; Grulke and Balduman, 1999). The interac-
tions with soil nutrition and O3 impacts appear to be rather
complex as O3 effects have been shown to be exacerbated
by both low (Karnosky et al., 1992) and high nutrients status
(Tjoelker and Luxmoore, 1991), whereas other studies have
shown no impact of soil nutrition on O3 effects (Greitner
et al., 1994). Nutrition is also closely linked to water relations
(Temple and Riechers, 1995) leading to complex O3/water/nu-
trition interactions which have not been characterized for most
tree species.

5.5. Competition

Given that availability of light, water and nutrients are all
affected by competition, and that O3 effects interact with all
three of these factors, it is not surprising that competition be-
tween trees can have a dramatic effect on how trees respond to
O3 (McDonald et al., 2002). Since the vast majority of O3

studies have been done with little or no competition (i.e.
with a small number of trees in chambers), it is difficult to
scale results from O3 effects in open-grown tree experiments
to the forest situation where strong competitive interactions af-
fect environmental conditions, carbon allocation patterns, and
pest susceptibility. Competition from understory vegetation
can also impact community responses to O3 (Barbo et al.,
1998).

5.6. Insect and disease pests

Interactions between O3 and insect and disease pests are
complex and highly variable (Hain, 1987; Manning and Tiede-
mann, 1995). The first reported O3/pest interaction of forest
trees was predisposition of western pines by O3 to attack by
bark beetles in southern California (Stark et al., 1968). This
bark beetle/O3 interaction was later found to be a very com-
plex one including drought and N deposition (Jones et al.,
2004). In feeding preference studies, gypsy moth larvae have
shown a preference to feed on O3-exposed oak seedlings
(Jeffords and Endress, 1984) and beetles have preferred
O3-exposed eastern cottonwood foliage (Jones and Coleman,
1988). These interactions with insects likely result from
O3-induced changes in foliar chemistry (Kopper and Lindroth,
2003) or from O3 impacts on parasitoid populations (Percy
et al., 2002; Kopper and Lindroth, 2003; Holton et al., 2003).

Altered performance of forest tree pathogens can also be
induced by elevated O3. Increased susceptibility of hybrid
poplar to Septoria canker was demonstrated by Woodbury
et al. (1994). Similarly, increased susceptibility to Melampsora
leaf rust has been shown in trembling aspen trees exposed to
elevated O3 (Karnosky et al., 2002; Percy et al., 2002).
5.7. Other pollutants

It was apparent in the early O3 research that the effects of
co-occurring pollutants such as SO2 could increase visible
symptoms caused by O3 (Dochinger et al., 1970; Costonis,
1970; Houston, 1974). Later, more complex studies showed
that interacting pollutants could increase, decrease, or not af-
fect growth responses for trees exposed to elevated O3 (Jensen,
1981; Kress et al., 1982; Yang et al., 1983).

The influx of air pollution research related to the National
Atmospheric Deposition Program (NAPAP) resulted in a large
number of papers published in the decade from 1985 to 1995.
However, the most realistic of these studies dealt with interact-
ing O3 and acidic deposition at high altitudes, or where fog co-
occurred with elevated O3. In these situations the effects of O3

may be difficult to distinguish from those of acidic deposition.
For example, the pine forests in the southern Sierra Nevada
Mountains of California are now known to have long been ex-
posed to both elevated O3 and acidic deposition (Fenn et al.,
1995; Grulke and Balduman, 1999; Bytnerowicz, 2002). Sim-
ilarly, high elevation spruce-fir forests of the Northeast are fre-
quently exposed to elevated O3 and acidic precipitation which
may be affecting cold tolerance of these forests (Thornton
et al., 1994).

5.8. Rising atmospheric CO2

Since pre-industrial times, the concentrations of atmo-
spheric CO2 and O3 have increased by over 30% (IPCC,
2001). These two co-occurring pollutants are quite interesting
as they act in diametrically different directions with regard to
forest tree growth and productivity. While O3 generally ad-
versely affects forest trees, elevated CO2 generally enhances
growth and productivity, albeit these relationships vary by spe-
cies (Karnosky et al., 2003a, 2005), soil nutrition (Oren et al.,
2001) and age of the forest.

While several authors report that elevated atmospheric CO2

generally ameliorates the effects of O3 on photosynthesis and
growth (Dickson et al., 1998; Volin et al., 1998; Loats and
Rebbeck, 1999; Rebbeck and Scherzer, 2002), negative inter-
actions of these two pollutants have also been reported (Kull
et al., 1996; McDonald et al., 2002; Olszyk et al., 2002).
One likely outcome of the future is that increasing levels of
ambient O3 will likely diminish the potential of forest trees
to sequester additional CO2 under rising atmospheric CO2

(Karnosky et al., 2003a; Beedlow et al., 2004).

6. Research needs

After 50 years of research on the effects of O3 on forest
trees, there remain a large number of important research ques-
tions to be addressed in order to truly understand impacts of
O3 and to predict the influence of O3 air pollution in a changing
global environment (Karnosky et al., 2003c).
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6.1. Numbers of forest and native plants showing
ozone-induced symptoms

There is a continuing need to determine exposure/response
relationships under ambient O3 exposures for more forest tree
species. In comparison to the myriad species which comprise
our natural plant communities and forests, only a relative
handful of higher plant species have been studied. In addition,
for most investigated species, we have simply determined sen-
sitivity by use of O3-induced foliar symptoms (Skelly, 2000).
Since foliar injury is likely indicative of more serious and ad-
verse physiological changes that have taken place, the more
species that are identified as being O3-sensitive, the more it be-
comes important to reduce the primary precursor air pollutants
that contribute to the photochemical process leading to O3 for-
mation. The list of O3-sensitive plants continues to grow
through investigations by Skelly et al. (1999), VanderHeyden
et al. (2000), Innes et al. (2001), Orendovici et al. (2003),
and Davis et al. (2005).

6.2. Ozone impacts on forest productivity

The majority of experiments to determine the impacts of O3

on forest productivity have been done on young seedlings in
chambers. Unfortunately, these studies are of limited value
in predicting the impacts of O3 on forest productivity as
they represent only a brief glimpse of the entire life history
of a forest stand, the physiology of seedlings and mature trees
may be very different, and the lack of competition in chamber
studies could affect responses to O3 (McDonald et al., 2002).

In order to make better predictions of impacts of O3 on
long-term forest productivity, long-term studies are needed
of O3 exposure in realistic forest stands such as: (1) the
FACE experiments that have been used to study impacts of
global change (Miglietta et al., 2001; Karnosky et al., 2003a,
2005; Körner et al., 2005); and (2) dendrochronology bands
(McLaughlin and Downing, 1995; McLaughlin et al., 2002).
Natural O3 gradients around and downwind of metropolitan
areas may also be useful for documenting O3 effects on forest
productivity (Simini et al., 1992; Gregg et al., 2003; Karnosky
et al., 2003b). However, co-occurring pollutants can confound
such studies. Finally, comparing multiple studies of different
types with common sets of genetic materials can be useful
in adding to the predictive power, if results are similar. For ex-
ample, a common set of genetic materials (aspen clones) has
been used in growth and productivity studies in 3-year studies
within open-top chambers (Karnosky et al., 1996), open-air
(FACE) exposure systems (Isebrands et al., 2001; Percy
et al., 2002; Karnosky et al., 2003a, 2005) and a natural O3

gradient (Karnosky et al., 1999, 2003b). These plant materials
have behaved similarly in terms of visible foliar symptom de-
velopment, growth depression and fitness under relatively
long-term O3 exposures in varied environments and soil condi-
tions. This helps us begin to develop a clear picture of the im-
pacts of O3 on aspen productivity, under both current and
projected exposures to ambient O3.
6.3. O3 impacts on forest ecosystems

The impacts of O3 on forest ecosystem processes such as
nutrient and water cycling, trophic interactions, community
development, and fitness are largely unknown (Heck et al.,
1998; Laurence and Andersen, 2003; Karnosky et al., 2003c;
Percy et al., 2003). Undoubtedly, the most studied forest
ecosystem impacts are those from the mountains of southern
California (Miller and Millecan, 1971; Miller et al., 1996;
Bytnerowicz et al., 2003). In these southern California studies,
O3 impacts on long-term changes in forest community struc-
ture and composition (Miller, 1973) and complex long-term
interaction with bark beetles (Stark et al., 1968) have been
documented. More recently, the complex nature of the O3

and N deposition interaction has been discovered (Bytnero-
wicz, 2002).

The Aspen FACE project, which is examining the long-
term impacts of O3 on a northern Wisconsin forest ecosystem
dominated by aspen, is also beginning to yield valuable in-
sights into the impacts of O3 on forest ecosystems. In the
FACE project, O3-induced impacts have been studied on tro-
phic interactions (Karnosky et al., 2002; Percy et al., 2002;
Kopper and Lindroth, 2003; Mondor et al., 2004), litter de-
composition (Parsons et al., 2004), soil carbon accumulation
(Loya et al., 2003), mineral weathering (Holmes et al., 2003;
Karberg et al., 2005), soil microbial communities (Phillips
et al., 2002; Larson et al., 2002), soil invertebrate diversity
(Loranger et al., 2004), and competitive indices (McDonald
et al., 2002).

6.4. Risk analysis and the adequacy of O3 standards to
protect forest ecosystems

In 1997, the US EPA replaced the former 1979 primary O3

National Ambient Air Quality Standard (NAAQS) with a new
primary O3 NAAQS set at 0.08 ppm (80 ppb) calculated as the
3-year average of the annual fourth highest daily maximum
8-h O3 concentrations measured at each monitor within an
area (Federal Register, 1997). However, the success of this
standard in protecting forest trees and forest ecosystems is
far from certain (Percy et al., 2003; Percy et al., in press a,b).

Studies are needed to compare forest productivity and
forest health to various O3 metrics. A long-lasting and ongoing
debate is the relative importance of short-term O3 peaks versus
long-term seasonal accumulation of O3 in determining the ex-
tent of O3-induced impacts on plants (Musselman et al., 1983).
Clearly, the current standard does not protect sensitive individ-
uals of many tree species from visible symptom development
in rural areas, as evidenced by the common occurrence of
these symptoms even in areas in compliance with the current
standard (Hildebrand et al., 1996; Chappelka et al., 1999b).

6.5. Remote area monitoring of O3

The current network of O3 monitoring for compliance with
O3 standards is inadequate to quantify O3 exposures in most
remote forest areas in North America (Laurence and
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Andersen, 2003). While more extensive monitoring with me-
chanical O3 monitors is clearly needed, ambient O3 monitor-
ing can be supplemented with surveys using O3-induced
symptoms on forest trees (Smith et al., 2003) and with the
use of passive samplers (Manning et al., 1996; Yuska et al.,
2003). A current survey system is providing valuable insights
into O3 exposure in remote forest areas (Smith et al., 2003).
Passive samplers can be particularly useful to supplement me-
chanical monitors in remote areas as they are less expensive to
establish and maintain than active monitors, thus allowing
more complete coverage of O3 monitoring over the landscape.

6.6. Interacting factors

Ozone deposition to forest trees does not occur in the ab-
sence of other interacting factors. Additional studies are
needed to help understand the complex interactions of O3

with the changing atmospheric conditions, including global
warming, elevated CO2, and N deposition (Kickert and Krupa,
1990; Ollinger et al., 2002; Karnosky et al., 2003c). In addi-
tion, the interaction of O3 and forest tree insects and/or dis-
eases have only been examined for a few tree species.

6.7. O3 effects at the landscape and global levels

Additional work is needed to scale results from stand and
community level O3 responses up to the landscape or global
level. Clearly, more research is needed in modeling the future
extent and concentrations of O3 over the earth surface (Fowler
et al., 1999). While some attempts have been made to scale O3

responses to the landscape level (Felzer et al., 2004), better
doseeresponse functions, as in Percy et al (in press b), are
needed to develop accurate landscape-level predictions of
O3-induced responses to forests and native vegetation
(Karnosky et al., 2005).

7. Concluding remarks

Ozone is a natural constituent of the atmosphere in which
US forests grow. While peak O3 concentrations have been de-
clining, background levels in many forested areas have, in fact,
been increasing (Vingarzan, 2004). Recent ecosystem model-
ing work indicates the large negative impact (up to 13%)
that historical O3 levels may have had on US terrestrial net
ecosystem production (NEP) (Felzer et al., 2004). Ozone at
ambient levels in a number of forest regions is known to in-
duce visible foliar symptoms in ecologically and commer-
cially important tree species. Sensitive genotypes of key
species have already been impacted. Adverse impacts at cellu-
lar, leaf, organ and tree levels are known to occur in diverse
systems that are geographically widely dispersed. Productivity
of some species is likely being reduced, whereas others may
be more disposed to other biotic and abiotic stresses. Whereas
the underlying processes controlling O3 formation and deposi-
tion are well understood, causeeeffect linkage in the field for
O3 effects on ecosystem structure and function with few ex-
ceptions remains problematic. Given the predominant role of
meteorology in controlling O3 entry into the plant and the var-
iability inherent in forest ecosystems, it is not surprising that
factors controlling O3 flux remain as important research ques-
tions. Scaling O3 effects to landscape and region remain as
pressing research needs to facilitate more accurate and reliable
O3 risk analysis across the US.
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